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Aim of this talk

• What is the tame kernel of number fields ?

• What is governing fields ?

• Why do governing fields matter?
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Plan

1. Tame kernel of number fields

2. The governing fields for 2-power ranks of ideal class groups of
quadratic fields

3. Known facts about the governing fields for 2-power ranks of ideal
class groups of quadratic fields (our model case)

4. some known results for 2-power ranks of tame kernels associated
with quadratic fields

5. Hurrelbrink-Kolster’s 4-rank formulae [HK98]

6. toward a governing field for 4-rank of tame kernels associated
with quadratic fields
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Milnor’s K2 of a number field

F : a number field of finite degree over the rationals Q, the second
Milnor K-group K2(F ) is defined by

K2(F ) := F× ⊗ F×/⟨x ⊗ (1 − x)| x ∈ F×, x(1 − x) ̸= 0⟩.

The class represented by a ⊗ b ∈ F× ⊗ F× is denoted by
{a, b} ∈ K2(F ).
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Milnor’s K2 of a number field (cont’d)

S: a finite set of finite places of F , OS(F ): the ring of S-integers of F ,

O×
S (F ): the group of S-units of F ,

KS
2 (F ) := {{a, b} ∈ K2(F )| a, b ∈ O×

S (F )}.

Note that KS
2 (F ) is finitely generated (since O×

S is so).

Sm: the first m finite places of F with respect to the norm N(v) of v,
then it holds that

K2(F ) = lim
−→
m

KSm
2 (F ).
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Tame symbol at a finite place v

Let v be a finite place of F , k(v) be the residue field at v, then the
tame symbol ∂v at v is defined by

∂v : K2(F ) → k(v)×, {a, b} 7→ (−1)αβ aβ

bα
(mod v),

where α = ordv(a), β = ordv(b), ordv(·) is the additive normalized
valuation at v.
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Tame kernel of number fields

We define the tame kernel K2(OF ) of a number field F (whose ring
of integers OF ) to be

K2(OF ) :=
∩

v: fin. places

ker(∂v : K2(F ) → k(v)×).

Fact. The tame kernel of number field F is coincide with the second
algebraic K-group of OF .
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Finiteness of tame kernels

Fact (Garland [Gar71]). ∃S: a finite set of finite places such that

K2(OF ) ⊂ KS
2 (F ).

Thus K2(OF ) is finitely generated. It is known that the groups is
torsion. It follows from these fact that K2(OF) is a finite abelian
group.
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Computation of tame kernels

Tame kernel K2(OF ) of a number field F is computable in theory:

• its order

• its structure

cf. a practical algorithm is given by Belabas-Gangl [BG04].

If F is a real abelian field, the order of K2(OF ) is given by the
formula (Birch-Tate conjecture, proved by Mazur-Wiles, Kolster)

#K2(OF ) = (−1)[F :Q]w2(F )ζF (−1),

where w2(F ) := max{n| exp(Gal(F (ζn)/F )) ≤ 2}.
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Distribution of (odd parts of) tame kernels of

quadratic fields

F = Q(
√

D): a quadratic field of the discriminant D,

OD: its ring of integers,

p: an odd prime (fix),

Problem: For a positive real number X, estimate the number

#{0 < |D| < X| p - #K2(OD)}

in terms of X.

If D > 0, one can obtain some estimate by using Birch-Tate
conjecture ([Kim07]).
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Distribution of (odd parts of) tame kernels of

quadratic fields (cont’d)

With the same notations,

Problem: For a positive real number X, estimate the number

#{0 < |D| < X| p | #K2(OD)}

in terms of X.

(For p = 3, if d > 0 and d ≡ 6 (mod 9) then 3 | #K2(Od), by
J. Browkin [Bro00].

For p = 5, if d > 0, 5 | h(Q(
√

5d)) then 5 | #K2(Od) by [Bro92]a.)
aJust after my talk, Prof. Y. Kishi kindly noticed me that one can deduce,

from Ichimura [Ich03], there are infitely many real quadratic fields whose class

numbers and discriminants both divisible by 5. Thus we see ∃∞D > 0 such that

5 | #K2(OD). This has been shown already by Kimura [Kim06].
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2-power ranks for finite abelian groups

Notation. G: a finite abelian group,

2i-rank ei(G) of G (i = 1, 2, . . . ) are defined by

ei(G) = dimZ/2Z(G2i−1
/G2i

).
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Distribution of (2-parts of) tame kernels of

quadratic fields

Today’s theme: We want to know the following density of prime
numbers q:

D: A square free integer (fix).

e: A natural number (fix).

T : A finite abelian 2-group of exponent dividing 2e (fix).

#{q| K2(ODq)/K2(ODq)2
e ∼= T }

#{all primes}
=?,

where ODq is the ring of integers of Q(
√

Dq).
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Model Case: 2-part of ideal class groups

D: A square free integer (fix).

e: A natural number (fix).

T : A finite abelian 2-group of exponent dividing 2e (fix).

#{q| Cl(ODq)/Cl(ODq)2
e ∼= T }

#{all primes}
=?,

where Cl(ODq) is the ideal class group of Q(
√

Dq).

In some cases, the RHS is known!
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Model Case: Governing field for

2-part of ideal class groups

Fact. (Stevenhagen [Ste89], Morton [Mor82],...) For a square free
integer D (with some assumptions), there is a Galois extension
Σ(D)/Q such that the following equivalence holds: for a triple of
integers ρ, s and r (0 ≤ ρ ≤ s ≤ r),

Cl(ODq)/Cl(ODq)8 ∼= (Z/2Z)r−s ⊕ (Z/4Z)ρ ⊕ (Z/8Z)s−ρ

⇐⇒[
Σ(D)/Q

q

]
⊂ Conjugacy classes depending on ρ, s and r.

Chebotarev density theorem provides the density of such q.
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Governing field for ideal class group

(Cohn-Lagarias) [CL83]

This kind of phenomenon was first suggested by Cohn-Lagarias 1983.
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Governing field for ideal class group

(Morton) [Mor82]

Suppose D = p1 . . . pr, pi ≡ 1 (mod 4),
(

pi

pj

)
= 1 for i ̸= j, q ≡ 3

(mod 4),

then, ∃Σ(−D) such that
[

Σ(−D)/Q
q

]
determines Cl(−Dq)/Cl(−Dq)8.

Further, Morton shows that, in this case, [Σ(−D) : Q] = 2(r
2)+2r and

gave explicit density.

(cf. Hokuriku Number Theory Workshop 2007.)
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Governing field for ideal class group

(Stevenhagen) [Ste89]

For any D ∈ Z, D ̸≡ 2 (mod 4),

KD := Q(
√

p∗; p∗ | D),

where p∗ is a prime fundamental discriminant.

Ω(D) := the maximal abelian extension of KD unramified outside
2D∞ and of exponent 2 over KD.

Then, Cl(Dq)/Cl(Dq)8 is determined by
[

Ω(D)/Q
q

]
.

(the most general up to now, but less explicit).
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Morton’s strategy

2-rank of ideal class groups of quadratic fields Q(
√

Dq)...well known,

4-rank and 8-rank are described by certain square matrix over Z/2Z.

Its entries are of the form (
Npi,−Dq

pj

)′

,

where ′ means that 1′ = 0 (mod 2), −1′ = 1 (mod 2).

Strategy: decompose the matrix into the part depends only on D

and depends on q.



Governing fields for tame kernels of quadratic fields KANT 2010 at Kyushu, 2010/03/19 20

4-rank formula of K2

Hurrelbrink and Kolster [HK98, lemma 5.1].

For an imaginary quadratic field Q(
√

d), d < 0,

e2(K2(Od)) = #{p > 2; p | d, } − rankZ/2Z(M(d)),

where M(d) is the matrix of the form...
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4-rank formula of K2 (cont’d)

M(d) =



(−d, p1)2 (−d, p1)p1 · · · (−d, p1)pt

(−d, p2)2 (−d, p2)p1 · · · (−d, p2)pt

...
...

...
...

(−d, pt−1)2 (−d, pt−1)p1 · · · (−d, pt−1)pt

(−d, v)2 (−d, v)p1 · · · (−d, v)pt

(−d,−1)2 (−d,−1)p1 · · · (−d,−1)pt



′

,

v = 2 if 2 ̸∈ N(Q(
√

d)×), v = u + w if 2 ∈ N(Q(
√

d)×) (in this case,
d ∈ N(Q(

√
2)×), so d = u2 − 2w2).

(Note that trailing ′, this is a matrix over Z/2Z).



Governing fields for tame kernels of quadratic fields KANT 2010 at Kyushu, 2010/03/19 22

4-rank of K2 for certain quadratic fields

Conner-Hurrelbrink [CH89] determined 4-ranks of K2 for the
following cases:

d = pl, 4 − rank = 1 or 2,

d = 2pl, 4 − rank = 1 or 2,

d = −pl, 4 − rank = 0 or 1,

d = −2pl, 4 − rank = 0 or 1.

Method: Hurrelbrink-Kolster’s 4-rank formula, relation between the
rank of the matrix M(dl) and splitting of l in certain number field,
and representation of power of l by positive definite binary quadratic
forms.
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Osburn’s computation of 4-rank densities [Osb02]

R. Osburn computed the 4-rank densities for D = pl, 2pl, −pl, −2pl.

L =
{

l ∈ Z| l is prime , l ≡ 1 (mod 8),
(

l

p

)
=

(p

l

)
= 1

}
Theorem (Osburn) For the fields Q(

√
pl), Q(

√
2pl), 4-rank 1 and 2

each appear with natural density 1/2 in L.

For the fields Q(
√
−pl), Q(

√
−2pl), 4-rank 0 and 1 each appear with

natural density 1/2 in L.

Method: a construnction of a governing field (no reference to this
term, though).
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4-rank formula revisited

The formula is of the form

e2(K2(ODq)) = t − rankZ/2ZM(Dq).

If one can state the condition ”If q is decomposed in certain way in a
certain number field, then the rank of M(Dq) is the same for those
q”, then the 4-rank is the same for those q.

(This gives an estimate of density of q from below.)
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4-rank formula revisited (cont’d)

On the other hand, if one wants to compute the density of q which
satisfies e2(K2(ODq)) = e (e given), one must enumerate possible
M(Dq).

(As Morton did in the ideal class groups case).
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Conclusion

• Governing field is interesting notion (there also is a notion
”Chebotarev set”).

• Construction of a governing field for K2(ODq) has established
only for a few case (the case D having a few prime factors).

• 8-rank of K2(ODq)?...seems difficult. cf. Vazzana [Vaz99].
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