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Sato theory

Mikio Sato’s theory on ‘soliton’ nonlinear PDEs, such as the
Korteweg-de Vries (KdV) equation
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(u = u(t , x), a model for waves on shallow water surfaces)
and the Kadomtsev-Petviashvili (KP) equation
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(u = u(t , x , y), two-dimensional KdV equation), has a
strong connection with algebraic curves.



Elliptic and theta solutions

Look for a solution to KdV uxxx = 6uu x + ut of the form
u = f (x − ct ) (f : one-variable function, c : constant).

• f ′′′ = 6ff ′ − cf ′

• f ′′ = 3f 2 − cf + b (b : constant)

• f ′′f ′ = (3f 2 − cf + b )f ′

• 1
2(f ′)2 = f 3 − c

2 f 2 + bf + a (a : constant)

Conclusion : The Weierstrass ℘ function of an elliptic curve
1
2y 2 = x 3 − c

2 x 2 + bx + a gives rise to a solution to KdV.

More generally, the theta function of each hyperelliptic curve
gives rise to a solution to the KdV equation (hierarchy).
The theta function of each algebraic curve gives rise to a
solution to the KP equation (hierarchy).



Manin-Mumford conjecture

C : proper smooth curve over C
J : Jacobian variety, JTor : torsion subgroup
Θ : theta divisor on J (zero locus of the theta function)

Manin-Mumford conjecture (Raynaud’s theorem) implies:

JTor ∩Θ is a finite set

Problem : Determine this finite set explicitly.

Quite a lot of works have been done, especially in the cases
of modular curves, Fermat curves and their quotients.

Example (Coleman, Kaskel, Ribet (1999)): For C = X0(37),

JTor ∩Θ = { two cusps }



Anderson’s result

C : y l = x a(1 − x)l+1−a , l : odd prime, 0 < a < l
(cyclic quotient of the Fermat curve of degree l )

Z[ζl ] acts on C (hence on J ) by [ζl ](x , y) = (x , ζly)
p ⊂ Z[ζl ] : prime ideal, p | (p), p : prime, p ≡ 1 mod l

Theorem. J[(1 − ζl)p] ∩Θ = J[(1 − ζl)] ∩Θ

Excerpt from [A] : The proof of [the above theorem] is only
the secondary purpose of this paper. The primary one is to
initiate diophantine applications of soliton theory...



Strategy

Given P ∈ JTor , one wants to detect P < Θ.
Recall that Θ is the zero locus of the theta function θ.
We introduce the tau function with properties:

• a strong method (Sato expansion theorem) of
computation at one’s disposal;

• the zero locus of the tau function ‘coincides’ with Θ;

• however the tau function is not defined on J ; it is a
function on the (infinite dimensional) loop group acting
on the (again infinite dimensional) Sato Grassmannian

The rest of this talk is (mostly) devoted to a construction of
the tau function with the above properties.



Sato Grassmannian

k : field; H = k ((1
t )), H+ = tk [t ], H− = k [[1

t ]]
Definition. The Sato Grassmannian Gr is the set of linear
subspaces V of k ((1

t )) such that the kernel and cokernel of

fV : V ↪→ H → H/H−(� H+)

are finite dimensional; we further set for each i ∈ Z
Gr i = {V ∈ Gr | dim ker (fV) − dim coker (fV) = i}.
Remark. V ⊂ H belongs to Gr i iff ∃w : H+ ↪→ H = H+ ⊕ H−
V = w (H+), t iw = (1 + u, v), u : finite rank

Basic example : t ik [t ] is in Gr 1−i

This corresponds to the case of C = P1 in the following:



Krichever pair

C/k : smooth projective irreducible curve of genus g
Fix∞ ∈ C(k ) and an isomorphism N0 : k [[1

t ]] � ÔC ,∞

Roughly speaking,

• A = Γ(C \ {∞},OC), coordinated by N0, is in Gr 1−g

• L ∈ Pic(C), σ : trivialization of L at∞, deg(L) = n,
L = Γ(C \ {∞},L), coordinated by σ, is in Gr n+1−g

Remark : Such a pair (L, σ) is called a Krichever pair.
L belongs to GrA := {V ∈ Gr | AV ⊂ V}.
Precisely speaking, N : Spec H → C : induced by N0

• A = {N∗s ∈ H | s ∈ Γ(C \ {∞},OC)

• σ = σ0 ⊗ H, σ0 : N∗
0
L � k [[1

t ]],
L = {σN∗s ∈ H | s ∈ Γ(C \ {∞},L)}



Krichever correspondence

Krichever showed that this construction defines bijections

{(L, σ)}/ � � Pic(C) ⊃ J ⊃ Θ

l l l l
GrA �(GrA/ ≡) ⊃(Gr 1−g

A
/ ≡) ⊃(X/ ≡)

(L, σ) � (L′, σ′) ⇔ L � L compatible with σ, σ′

V ≡ V ′ ⇔ V ′ = uV for some u ∈ k [[1
t ]]
∗ (V , V ′ ∈ Gr)

Gr i
A

= Gr i ∩ GrA

X = {V ∈ Gr 1−g

A
| V ∩ t g−1k [[1

t ]] , 0}
The last correspondence follows from

• Θ = {L ∈ J | H0(C ,L((g − 1)∞) , 0},
• H0(C ,L((g − 1)∞)) = ker(L → k ((1

t ))/t
g−1k [[1

t ]]).



Loop group

To proceed further, one has to consider analytic version, but
in this talk we pretend as if no ‘convergent problem’ exists.
Let (p : prime and [k : Qp ] < ∞) or (p = ∞ and k = C).

Definition. We define the loop group to be

Γ = {1 +
∞∑

n=1

an t n ∈ k [[t ]]∗};

for h ∈ Γ and w ∈ H, one ‘defines’ a product hw ∈ H, which
induces an action of a big group Γ on H and on Gr .

Actually, this action is not well-defined, since a product
hw of h ∈ Γ and w ∈ H = k ((1

t )) cannot be well-defined;
this problem is resolved by introducing analytic version.



Tau function

Suppose W ∈ Gr is given by W = w(H+) with
t i w = (1 + u, v) : H+ ↪→ H = H+ ⊕ H−, u: finite rank.
We define the tau function τW : Γ → k by

τW(h) = det(H+
t i w→ H

h→ H
proj→ H+).

To define the determinant of an endomorphism on an infinite
dimensional space H+, one again has to use analytic theory.
(p -adic case : Serre’s theory of p -adic Banach space.)

Key Lemma. Take W ∈ Gr 1−g

A
. For h ∈ Γ, τW(h) = 0 iff

hW falls in Θ via the Krivever correspondence.
Proof. τW(h) = 0 ⇔ ker(...) , 0 ⇔ t 1−gW ∩ h−1H− , 0
⇔ hW ∩ t g−1H− = hW ∩ t g−1k [[1

t ]] , 0 ⇔ hW ∈ X � Θ.



Tau and theta (detour)

τ and θ share Θ as their zero loci, suggesting the following
Theorem. (cf. [SW §9]) When k = C, we have

τW(h(~x)) = (linear exponential factor)θ(~x).

Here both sides are functions of ~x = (x1, x2, · · · , xg) via

• h(~x) := exp(x1t + x2t 2 + · · ·+ xg t g) (∈ Γ),

• θ is a function on a universal covering Cg � J .

(A lot of choice and complicated normalization required.)
u := (log τW ◦ h)x1x1 = (log θ)x1x1 satisfies the KP equation
upon substituting x1 = t + x , x2 = y , as well as a family of
PDEs, called the KP hierarchy, involving ux i for i > 2.

Problem. Is there a p -adic analogue for the Tate/Mumford
curves or curves with good ordinary reduction?



Sato expansion theorem

The tau function admits the following Sato expansion

τW(h) =
∑

λ

Pλ(W)Sλ(h)

• λ = (λ1 ≥ λ2 ≥ · · · ≥ λr) runs all partitions (λi , r ∈ N)

• Pλ(W) = the Plücker coordinate of W at λ
= det(w i ,j−λi−i)ij for a good basis {w i =

∑
w ij t j}i of W

• Sλ(h) = the Schur polynomial of λ
= det(hλi−i+j)ij for h =

∑
i h i t i

Proof. Apply the Laplace expansion of (infinite) determinant

to the definition τW(h) = det(H+
t i w→ H

h→ H
proj→ H+).

End of the survey of [A]. Now we discuss the Sato theory.



Quick review on Pl ücker embedding
The Grassmannian Gr(n ,N) = {W ⊂ k N | dim W = n}
admits the Plücker embedding (0 ≤ n ≤ N, d =

(
N
n

)
− 1 )

Gr(n ,N) ⊂ Pd ; W 7→ (Pµ(W) = det(w i ,µj )ij )µ,

• µ = (1 ≤ µ1 < · · · < µn ≤ N)

• {w i = (w ij )j}i is a basis of W ;

by which Gr(n ,N) is identified with the closed subvariety of
Pd defined by the Plücker bilinear relations.

Example. Gr(2, 4) ⊂ P5 is defined by

P12P34 − P13P24 + P14P23 = 0.



Plücker relation and KP hierarchy

The Schur functions {Sλ(h)}λ form an orthogonal basis of
the Hilbert space X of functions on Γ; any ξ ∈ X is written as

ξ(h) =
∑

λ

Pλ(ξ)Sλ(h).

Theorem (Sato). (1) For ξ ∈ X; ∃W ∈ Gr s.t. ξ = τW iff
{Pλ(ξ)}λ satisfies the (infinite) Plücker relations.
(2) The Plücker relation is ‘equivalent’ to the KP hierarchy.
In other words,

• Gr ⊂ P(X) is defined by the Plücker relations,

• Gr ⊂ P(X) parametrize ‘all’ solutions to KP.

Combined with the relation of τ to θ, one gets solutions to KP
arising from the theta functions of algebraic curves.



Other problems (1)

• (Repetition) Establish a formula connecting the p -adic
tau and theta functions for the Tate/Mumford curves or
curves with good ordinary reduction.

• Deduce ‘p -adic theta solutions’ to the KP hierarchy,
using an answer to the above problem.

• Ichikawa proved this for Mumford curves without using
the tau function.



Other problems (2)

• Fay’s formula on the vanishing order of θ at P along ~v
(P ∈ Θ, ~v : tangent vector of C embedded in J at P)
is re-proved in [SW] using Sato expansion theorem.
Birkenhake-Vanhaecke find the third geometric proof.

• Anderson claims [A] is a p -adic analogue of this result
(although P is not on Θ in this case). There is technical
difficulty to generalize his method to other situation.

• Can one prove the p -adic analogue of Fay’s formula in
the style of Birkenhake-Vanhaecke, hopefully for more
general situation (general C and P)?



Other problems (3)

• When one considers a positive characteristic version,
it seems that the Drinfeld module naturally comes up.

• The l -adic Sato theory (with l , p or l = ∞) could be
useful to deal with p -torsion point.

• For a fixed W ∈ Gr 1−g

A
, give a description of the image of

Γ → Gr 1−g

A
� J ; h 7→ [hW ]

in terms of the Néron model/formal group.


