Sato theory, p-adic tau function and arithmetic geometry

Takao Yamazaki

Tohoku University

March 19, 2010

References

This talk is mainly devoted to a survey of the paper [A] Anderson, Torsion points on Jacobians of quotients of Fermat curves and p-adic soliton theory, Invent. Math. 118 (1994), 475-492
in which the \boldsymbol{p}-adic analogue of the Sato theory is developed and applied to arithmetic geometry.

A basic reference to the Sato theory is
[SW] Segal, Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65.

Sato theory

Mikio Sato's theory on 'soliton' nonlinear PDEs, such as the Korteweg-de Vries (KdV) equation

$$
\frac{\partial u}{\partial t}+6 u \frac{\partial u}{\partial x}-\frac{\partial^{3} u}{\partial x^{3}}=0
$$

($\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})$, a model for waves on shallow water surfaces) and the Kadomtsev-Petviashvili (KP) equation

$$
\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}+6 u \frac{\partial u}{\partial x}-\frac{\partial^{3} u}{\partial x^{3}}\right)+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

($\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x}, \boldsymbol{y})$, two-dimensional KdV equation), has a strong connection with algebraic curves.

Elliptic and theta solutions

Look for a solution to $\mathrm{KdV} \boldsymbol{u}_{x x x}=6 u u_{x}+u_{t}$ of the form $\boldsymbol{u}=\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{c t}) \quad(\boldsymbol{f}$: one-variable function, \boldsymbol{c} : constant $)$.

- $f^{\prime \prime \prime}=6 f f^{\prime}-c f^{\prime}$
- $\boldsymbol{f}^{\prime \prime}=3 \boldsymbol{f}^{2}-\boldsymbol{c f}+\boldsymbol{b} \quad$ (b : constant)
- $f^{\prime \prime} f^{\prime}=\left(3 f^{2}-c f+b\right) f^{\prime}$
- $\frac{1}{2}\left(f^{\prime}\right)^{2}=f^{3}-\frac{c}{2} f^{2}+b f+a \quad(a:$ constant $)$

Conclusion : The Weierstrass \wp function of an elliptic curve $\frac{1}{2} y^{2}=x^{3}-\frac{c}{2} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{a}$ gives rise to a solution to KdV.

More generally, the theta function of each hyperelliptic curve gives rise to a solution to the KdV equation (hierarchy). The theta function of each algebraic curve gives rise to a solution to the KP equation (hierarchy).

Manin-Mumford conjecture

C : proper smooth curve over \mathbb{C}
J : Jacobian variety, $J_{\text {Tor }}$: torsion subgroup
$\boldsymbol{\Theta}$: theta divisor on \boldsymbol{J} (zero locus of the theta function)
Manin-Mumford conjecture (Raynaud's theorem) implies:

$$
J_{\text {Tor }} \cap \Theta \text { is a finite set }
$$

Problem : Determine this finite set explicitly.
Quite a lot of works have been done, especially in the cases of modular curves, Fermat curves and their quotients.
Example (Coleman, Kaskel, Ribet (1999)): For $\boldsymbol{C}=\boldsymbol{X}_{0}(37)$,

$$
J_{\text {Tor }} \cap \Theta=\{\text { two cusps }\}
$$

Anderson's result

$C: y^{\prime}=x^{a}(1-x)^{1+1-a}, \quad I$: odd prime, $0<a<I$ (cyclic quotient of the Fermat curve of degree I)
$\mathbb{Z}[\zeta]$ acts on \boldsymbol{C} (hence on $\boldsymbol{J})$ by [$\zeta \boldsymbol{l}](\boldsymbol{x}, \boldsymbol{y})=(\boldsymbol{x}, \boldsymbol{\zeta}, \boldsymbol{y})$
$\mathfrak{p} \subset \mathbb{Z}[\zeta]$: prime ideal, $\mathfrak{p} \mid(p), p:$ prime, $p \equiv \mathbf{1} \bmod I$
Theorem. $\boldsymbol{J}\left[\left(1-\zeta_{1}\right) \mathfrak{p}\right] \cap \Theta=\boldsymbol{J}\left[\left(1-\zeta_{1}\right)\right] \cap \Theta$

Excerpt from [A]: The proof of [the above theorem] is only the secondary purpose of this paper. The primary one is to initiate diophantine applications of soliton theory...

Strategy

Given $\boldsymbol{P} \in \mathrm{J}_{\text {Tor }}$, one wants to detect $\boldsymbol{P} \notin \boldsymbol{\Theta}$.
Recall that $\boldsymbol{\Theta}$ is the zero locus of the theta function $\boldsymbol{\theta}$.
We introduce the tau function with properties:

- a strong method (Sato expansion theorem) of computation at one's disposal;
- the zero locus of the tau function 'coincides' with $\mathbf{\Theta}$;
- however the tau function is not defined on \boldsymbol{J}; it is a function on the (infinite dimensional) loop group acting on the (again infinite dimensional) Sato Grassmannian

The rest of this talk is (mostly) devoted to a construction of the tau function with the above properties.

Sato Grassmannian

$k:$ field; $H=k\left(\left(\frac{1}{t}\right)\right), H_{+}=t k[t], H_{-}=k\left[\left[\frac{1}{t}\right]\right]$
Definition. The Sato Grassmannian Gr is the set of linear subspaces \boldsymbol{V} of $\boldsymbol{k}\left(\left(\frac{1}{t}\right)\right)$ such that the kernel and cokernel of

$$
f_{V}: V \hookrightarrow H \rightarrow H / H_{-}\left(\cong H_{+}\right)
$$

are finite dimensional; we further set for each $\boldsymbol{i} \in \mathbb{Z}$
$G r^{i}=\left\{V \in \operatorname{Gr} \mid \operatorname{dim} \operatorname{ker}\left(f_{V}\right)-\operatorname{dim} \operatorname{coker}\left(f_{V}\right)=i\right\}$.
Remark. $\boldsymbol{V} \subset \boldsymbol{H}$ belongs to $\boldsymbol{G r} \boldsymbol{i}$ iff $\boldsymbol{\exists} \boldsymbol{w}: \boldsymbol{H}_{+} \hookrightarrow \boldsymbol{H}=\boldsymbol{H}_{+} \oplus \boldsymbol{H}_{-}$ $V=w\left(H_{+}\right), t^{i} w=(1+u, v), u$: finite rank
Basic example : $\boldsymbol{t}^{\boldsymbol{i}} \boldsymbol{k}[\boldsymbol{t}]$ is in $\boldsymbol{G r}^{\boldsymbol{1 - i}}$
This corresponds to the case of $\boldsymbol{C}=\mathbb{P}^{1}$ in the following:

Krichever pair

$\boldsymbol{C} / \mathbf{k}$: smooth projective irreducible curve of genus \boldsymbol{g} Fix $\infty \in \boldsymbol{C}(\boldsymbol{k})$ and an isomorphism $\boldsymbol{N}_{0}: \boldsymbol{k}\left[\left[\frac{1}{t}\right]\right] \cong \hat{\boldsymbol{O}}_{C, \infty}$
Roughly speaking,

- $A=\Gamma\left(C \backslash\{\infty\}, O_{C}\right)$, coordinated by N_{0}, is in $\boldsymbol{G r}^{1-g}$
- $\mathcal{L} \in \operatorname{Pic}(C), \sigma:$ trivialization of \mathcal{L} at $\infty, \operatorname{deg}(\mathcal{L})=n$, $L=\Gamma(C \backslash\{\infty\}, \mathcal{L})$, coordinated by σ, is in $G r^{+1-g}$
Remark : Such a pair (\mathcal{L}, σ) is called a Krichever pair.
\boldsymbol{L} belongs to $\boldsymbol{G r}_{\boldsymbol{A}}:=\{\boldsymbol{V} \in \boldsymbol{G r} \mid \boldsymbol{A V} \subset \boldsymbol{V}\}$.
Precisely speaking, $\boldsymbol{N}: \mathbf{S p e c} \boldsymbol{H} \rightarrow \boldsymbol{C}$: induced by \boldsymbol{N}_{0}
- $A=\left\{N^{*} \boldsymbol{s} \in H \mid \boldsymbol{s} \in \Gamma\left(C \backslash\{\infty\}, O_{c}\right)\right.$
- $\sigma=\sigma_{0} \otimes H, \sigma_{0}: N_{0}^{*} \mathcal{L} \cong k\left[\left[\frac{1}{t}\right]\right]$,
$L=\left\{\sigma N^{*} s \in H \mid s \in \Gamma(C \backslash\{\infty\}, \mathcal{L})\right\}$

Krichever correspondence

Krichever showed that this construction defines bijections

$$
\begin{array}{ccccc}
\{(\mathcal{L}, \sigma)\} / \cong & \rightarrow \operatorname{Pic}(C) & \supset & J & \supset \\
\mathfrak{l} & & \mathfrak{l} & \mathfrak{\imath} & \mathfrak{L} \\
G r_{A} & & \rightarrow\left(G r_{A} / \equiv\right) & \supset\left(G r_{A}^{1-g} / \equiv\right) & \supset(X / \equiv)
\end{array}
$$

$(\mathcal{L}, \sigma) \cong\left(\mathcal{L}^{\prime}, \sigma^{\prime}\right) \Leftrightarrow \mathcal{L} \cong \mathcal{L}$ compatible with σ, σ^{\prime} $\boldsymbol{V} \equiv V^{\prime} \Leftrightarrow V^{\prime}=\boldsymbol{u} \boldsymbol{V}$ for some $\boldsymbol{u} \in \boldsymbol{k}\left[\left[\frac{1}{t}\right]\right]^{*} \quad\left(V, V^{\prime} \in G r\right)$ $G r_{A}^{i}=G r^{i} \cap G r_{A}$
$X=\left\{V \in G r_{A}^{1-g} \left\lvert\, V \cap t^{g-1} k\left[\left[\frac{1}{t}\right]\right] \neq 0\right.\right\}$
The last correspondence follows from

- $\Theta=\left\{\mathcal{L} \in J \mid H^{0}(C, \mathcal{L}((g-1) \infty) \neq 0\}\right.$,
- $H^{0}(C, \mathcal{L}((g-1) \infty))=\operatorname{ker}\left(L \rightarrow k\left(\left(\frac{1}{t}\right)\right) / t^{g-1} k\left[\left[\frac{1}{t}\right]\right]\right)$.

Loop group

To proceed further, one has to consider analytic version, but in this talk we pretend as if no 'convergent problem' exists. Let ($\boldsymbol{p}:$ prime and $\left[\boldsymbol{k}: \mathbb{Q}_{\boldsymbol{p}}\right]<\infty$) or ($\boldsymbol{p}=\infty$ and $\boldsymbol{k}=\mathbb{C}$).
Definition. We define the loop group to be

$$
\Gamma=\left\{1+\sum_{n=1}^{\infty} a_{n} t^{n} \in k[[t]]^{*}\right\} ;
$$

for $\boldsymbol{h} \in \boldsymbol{\Gamma}$ and $\boldsymbol{w} \in \boldsymbol{H}$, one 'defines' a product $\boldsymbol{h} \boldsymbol{w} \in \boldsymbol{H}$, which induces an action of a big group $\boldsymbol{\Gamma}$ on \boldsymbol{H} and on $\mathbf{G r}$.
Actually, this action is not well-defined, since a product $\boldsymbol{h} \boldsymbol{w}$ of $\boldsymbol{h} \in \boldsymbol{\Gamma}$ and $\boldsymbol{w} \in \boldsymbol{H}=\boldsymbol{k}\left(\left(\frac{1}{t}\right)\right)$ cannot be well-defined; this problem is resolved by introducing analytic version.

Tau function

Suppose $\boldsymbol{W} \in \boldsymbol{G r}$ is given by $\boldsymbol{W}=\boldsymbol{w}\left(\boldsymbol{H}_{+}\right)$with $t^{i} \boldsymbol{w}=(1+u, v): H_{+} \hookrightarrow H=H_{+} \oplus H_{-}$, u : finite rank. We define the tau function $\tau_{w}: \Gamma \rightarrow k$ by

$$
\tau_{w}(\boldsymbol{h})=\operatorname{det}\left(\boldsymbol{H}_{+} \xrightarrow{t^{\prime} w} \boldsymbol{H} \xrightarrow{h} \boldsymbol{H} \xrightarrow{\text { proj }} \boldsymbol{H}_{+}\right) .
$$

To define the determinant of an endomorphism on an infinite dimensional space \boldsymbol{H}_{+}, one again has to use analytic theory. (\boldsymbol{p}-adic case : Serre's theory of \boldsymbol{p}-adic Banach space.)
Key Lemma. Take $\boldsymbol{W} \in \boldsymbol{G r}_{A}^{1-g}$. For $\boldsymbol{h} \in \boldsymbol{\Gamma}, \tau_{W}(\boldsymbol{h})=0$ iff $\boldsymbol{h} \boldsymbol{W}$ falls in $\boldsymbol{\Theta}$ via the Krivever correspondence.
Proof. $\tau_{W}(h)=0 \Leftrightarrow \operatorname{ker}(\ldots) \neq 0 \Leftrightarrow t^{1-g} W \cap h^{-1} H_{-} \neq 0$ $\Leftrightarrow h W \cap t^{g-1} H_{-}=h W \cap t^{g-1} k\left[\left[\frac{1}{t}\right]\right] \neq 0 \Leftrightarrow h W \in X \rightarrow \Theta$.

Tau and theta (detour)

$\boldsymbol{\tau}$ and $\boldsymbol{\theta}$ share $\boldsymbol{\Theta}$ as their zero loci, suggesting the following
Theorem. (cf. [SW §9]) When $\boldsymbol{k}=\mathbb{C}$, we have

$$
\tau_{w}(\boldsymbol{h}(\vec{x}))=(\text { linear exponential factor }) \theta(\vec{x}) .
$$

Here both sides are functions of $\overrightarrow{\boldsymbol{x}}=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{g}\right)$ via

- $h(\vec{x}):=\exp \left(x_{1} t+x_{2} t^{2}+\cdots+x_{g} t^{g}\right)(\in \Gamma)$,
- θ is a function on a universal covering $\mathbb{C}^{g} \rightarrow J$.
(A lot of choice and complicated normalization required.) $u:=\left(\log \tau_{W} \circ h\right)_{x_{1} x_{1}}=(\log \theta)_{x_{1} x_{1}}$ satisfies the KP equation upon substituting $\boldsymbol{x}_{1}=\boldsymbol{t}+\boldsymbol{x}, \boldsymbol{x}_{2}=\boldsymbol{y}$, as well as a family of PDEs, called the KP hierarchy, involving $\boldsymbol{u}_{x_{i}}$ for $i>2$.
Problem. Is there a \boldsymbol{p}-adic analogue for the Tate/Mumford curves or curves with good ordinary reduction?

Sato expansion theorem

The tau function admits the following Sato expansion

$$
\tau_{W}(h)=\sum_{\lambda} P_{\lambda}(W) S_{\lambda}(h)
$$

- $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}\right)$ runs all partitions $\left(\lambda_{i}, r \in \mathbb{N}\right)$
- $\boldsymbol{P}_{\lambda}(W)=$ the Plücker coordinate of \boldsymbol{W} at λ $=\operatorname{det}\left(\boldsymbol{w}_{i, j-\lambda_{i}-i}\right)_{i j}$ for a good basis $\left\{\boldsymbol{w}_{i}=\sum \boldsymbol{w}_{i j} t^{j}\right\}_{i}$ of \boldsymbol{W}
- $\boldsymbol{S}_{\boldsymbol{\lambda}}(\boldsymbol{h})=$ the Schur polynomial of λ $=\operatorname{det}\left(\boldsymbol{h}_{\lambda_{i}-i+j}\right)_{i j}$ for $\boldsymbol{h}=\sum_{i} \boldsymbol{h}_{\boldsymbol{i}} \boldsymbol{t}^{i}$

Proof. Apply the Laplace expansion of (infinite) determinant to the definition $\tau_{\boldsymbol{w}}(\boldsymbol{h})=\operatorname{det}\left(\boldsymbol{H}_{+} \xrightarrow{\boldsymbol{t}^{\prime} \boldsymbol{w}} \boldsymbol{H} \xrightarrow{\boldsymbol{h}} \boldsymbol{H} \xrightarrow{\text { proj }} \boldsymbol{H}_{+}\right)$.

End of the survey of $[A]$. Now we discuss the Sato theory.

Quick review on Plücker embedding

The Grassmannian $\operatorname{Gr}(\boldsymbol{n}, \boldsymbol{N})=\left\{\boldsymbol{W} \subset \boldsymbol{k}^{N} \mid \operatorname{dim} W=n\right\}$ admits the Plücker embedding $\quad\left(0 \leq n \leq N, d=\binom{N}{n}-\mathbf{1}\right)$

$$
\operatorname{Gr}(n, N) \subset \mathbb{P}^{d} ; \quad W \mapsto\left(P_{\mu}(W)=\operatorname{det}\left(w_{i, \mu_{j}}\right)_{i j}\right)_{\mu}
$$

- $\mu=\left(1 \leq \mu_{1}<\cdots<\mu_{n} \leq N\right)$
- $\left\{\boldsymbol{w}_{i}=\left(\boldsymbol{w}_{i j}\right)_{j}\right\}_{i}$ is a basis of \boldsymbol{W};
by which $\operatorname{Gr}(\boldsymbol{n}, \boldsymbol{N})$ is identified with the closed subvariety of \mathbb{P}^{d} defined by the Plücker bilinear relations.
Example. $\operatorname{Gr}(2,4) \subset \mathbb{P}^{5}$ is defined by

$$
P_{12} P_{34}-P_{13} P_{24}+P_{14} P_{23}=0 .
$$

Plücker relation and KP hierarchy

The Schur functions $\left\{\boldsymbol{S}_{\boldsymbol{l}}(\boldsymbol{h})\right\}_{\lambda}$ form an orthogonal basis of the Hilbert space \mathcal{X} of functions on $\boldsymbol{\Gamma}$; any $\xi \in \mathcal{X}$ is written as

$$
\xi(h)=\sum_{\lambda} P_{\lambda}(\xi) S_{\lambda}(h)
$$

Theorem (Sato). (1) For $\boldsymbol{\xi} \in \mathcal{X} ; \exists \boldsymbol{W} \in \boldsymbol{G r}$ s.t. $\boldsymbol{\xi}=\tau_{w}$ iff $\left\{P_{\lambda}(\xi)\right\}_{\lambda}$ satisfies the (infinite) Plücker relations.
(2) The Plücker relation is 'equivalent' to the KP hierarchy. In other words,

- $\operatorname{Gr} \subset \mathbb{P}(\mathcal{X})$ is defined by the Plücker relations,
- $\operatorname{Gr} \subset \mathbb{P}(X)$ parametrize 'all' solutions to KP.

Combined with the relation of τ to θ, one gets solutions to KP arising from the theta functions of algebraic curves.

Other problems (1)

- (Repetition) Establish a formula connecting the \boldsymbol{p}-adic tau and theta functions for the Tate/Mumford curves or curves with good ordinary reduction.
- Deduce ' p-adic theta solutions' to the KP hierarchy, using an answer to the above problem.
- Ichikawa proved this for Mumford curves without using the tau function.

Other problems (2)

- Fay's formula on the vanishing order of $\boldsymbol{\theta}$ at \boldsymbol{P} along $\overrightarrow{\boldsymbol{v}}$ ($\boldsymbol{P} \in \boldsymbol{\Theta}, \quad \overrightarrow{\boldsymbol{v}}:$ tangent vector of \boldsymbol{C} embedded in \boldsymbol{J} at \boldsymbol{P}) is re-proved in [SW] using Sato expansion theorem. Birkenhake-Vanhaecke find the third geometric proof.
- Anderson claims $[\mathrm{A}]$ is a \boldsymbol{p}-adic analogue of this result (although \boldsymbol{P} is not on $\boldsymbol{\Theta}$ in this case). There is technical difficulty to generalize his method to other situation.
- Can one prove the \boldsymbol{p}-adic analogue of Fay's formula in the style of Birkenhake-Vanhaecke, hopefully for more general situation (general \boldsymbol{C} and \boldsymbol{P})?

Other problems (3)

- When one considers a positive characteristic version, it seems that the Drinfeld module naturally comes up.
- The \boldsymbol{I}-adic Sato theory (with $I \neq p$ or $I=\infty$) could be useful to deal with p-torsion point.
- For a fixed $\boldsymbol{W} \in G r_{A}^{1-g}$, give a description of the image of

$$
\Gamma \rightarrow G r_{A}^{1-g} \rightarrow J ; \quad h \mapsto[h W]
$$

in terms of the Néron model/formal group.

