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Sato theory

Mikio Sato’s theory on ‘soliton’ nonlinear PDEs, such as the
Korteweg-de Vries (KdV) equation
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(u = u(t,x), a model for waves on shallow water surfaces)
and the Kadomtsev-Petviashvili (KP) equation
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(u =u(t,x,y), two-dimensional KdV equation), has a
strong connection with algebraic curves.



Elliptic and theta solutions

Look for a solution to KdV u,,x = 6uuy + u; of the form
u=f(x —ct) (f:one-variable function, c : constant).

o """ = 6ff" — cf’

o f” =3f2—cf +b (b : constant)

o £7f = (3f2 —cf + b)f’

e 2(f)?=1f3-%f24bf +a (a: constant)
Conclusion : The Weierstrass g function of an elliptic curve
2y2 = x3 — £x2 + bx + a gives rise to a solution to KdV.

More generally, the theta function of each hyperelliptic curve
gives rise to a solution to the KdV equation (hierarchy).

The theta function of each algebraic curve gives rise to a
solution to the KP equation (hierarchy).



Manin-Mumford conjecture

C : proper smooth curve over C
J : Jacobian variety, Jto : torsion subgroup
© : theta divisor on J (zero locus of the theta function)

Manin-Mumford conjecture (Raynaud’s theorem) implies:
J1or N O is a finite set

Problem : Determine this finite set explicitly.

Quite a lot of works have been done, especially in the cases
of modular curves, Fermat curves and their quotients.

Example (Coleman, Kaskel, Ribet (1999)): For C = Xo(37),

J1or N O = { two cusps }



Anderson’s result

C:y'=x31-x)"*2 |:o0ddprime, 0 <a<I
(cyclic quotient of the Fermat curve of degree )

Z[&] acts on C (hence on J) by [£](x,Y) = (x,41y)
p C Z[&] : prime ideal, p|(p), p :prime, p =1 mod |

Theorem. J[(1 =4 )p]NnO® =J[(1-4)]nO

Excerpt from [A] :  The proof of [the above theorem] is only
the secondary purpose of this paper. The primary one is to
initiate diophantine applications of soliton theory...



Strategy

Given P € J,, One wants to detect P ¢ O.
Recall that O is the zero locus of the theta function 6.
We introduce the tau function with properties:

e a strong method (Sato expansion theorem) of
computation at one’s disposal;

e the zero locus of the tau function ‘coincides’ with ©;

¢ however the tau function is not defined on J; itis a

function on the (infinite dimensional) loop group acting
on the (again infinite dimensional) Sato Grassmannian

The rest of this talk is (mostly) devoted to a construction of
the tau function with the above properties.



Sato Grassmannian

k :field; H =k((3)), Hy = tk[t], H- = k[[3]]
Definition. The Sato Grassmannian Gr is the set of linear
subspaces V of k ((#)) such that the kernel and cokernel of

fy 1V e H > H/H_(2 Hy)
are finite dimensional; we further set for each i € Z
Gr' = {V € Gr | dimker (fy) — dim coker (fy) = i}.
Remark. V ¢ H belongsto Gr' iff 3w : Hy < H = H, @ H_
V =w(Hy), t'w = (1 4+ u,v), u : finite rank
Basic example : t'k[t] is in Gr~
This corresponds to the case of C = P! in the following:



Krichever pair

C/k : smooth projective irreducible curve of genus g
Fix co € C(k) and an isomorphism No : k[[#]] & Oc .
Roughly speaking,
e A =T(C \ {o0},0¢), coordinated by Ny, is in Gr'-9
e L € Pic(C), o : trivialization of £ at co, deg (L) = n,
L = [(C \ {oo}, £), coordinated by o, is in Gr"+1-9
Remark : Such a pair (£, o) is called a Krichever pair.
L belongsto Grp :={V € Gr | AV C V}.
Precisely speaking, N : Spec H — C : induced by Ng
e A={N*s eH|s el(C\ {o0},0c)
o =00®H, oo : N L =k[[{]],
L ={oN*s eH|s e I(C \ {0}, L)}



Krichever correspondence

Krichever showed that this construction defines bijections

{(L,0)})/ = —» Pic(C) o J > 0O
I ) ) )
Gra »(Gra/ =) 2(Gr,°/ =) o(X/ =)

(L,0) = (L,0') & L = L compatible with o, 0"
V=V &V =uVforsomeu € k[[]]* (V,V’'€Gr)
GrL = Gr' N Gru
X ={VeGr |Vntsk[[}] # 0}
The last correspondence follows from
e @ ={LeJ|HYC,L((g — 1)) # 0},
* H%(C, L((9 - 1)e)) = ker(L = k((2))/t**kI[F]]).



Loop group

To proceed further, one has to consider analytic version, but
in this talk we pretend as if no ‘convergent problem’ exists.
Let (p : prime and [k : @,] < o) Or (p = o0 and k = C).

Definition. We define the loop group to be
M={1+4) at" ek[[t]I's
n=1

forh € 'and w € H, one ‘defines’ a product hw € H, which
induces an action of a big group I' on H and on Gr.

Actually, this action is not well-defined, since a product
hw ofh € Fandw € H = k((})) cannot be well-defined;
this problem is resolved by introducing analytic version.



Tau function

Suppose W € Gr is given by W = w(H,) with
t'w = (1 4+ u,v) : Hy = H = H, & H_, u: finite rank.
We define the tau function Ty, : ' = k by

proj

rw(h) = det(Hy S H S H S H,).

To define the determinant of an endomorphism on an infinite
dimensional space H,, one again has to use analytic theory.
(p-adic case : Serre’s theory of p-adic Banach space.)

Key Lemma. Take W € Gr:'g. Forh e T, 7w(h) = O iff
hw falls in © via the Krivever correspondence.

Proof. Tw(h) =0 & ker(...) 20 &t W Nh™H_#0
& hw Nt9TH_ = hw nt9k[[]] # 0 & hW € X » ©.



Tau and theta (detour)

7 and 6 share O as their zero loci, suggesting the following
Theorem. (cf. [SW §9]) When k = C, we have

Tw(h(X)) = (linear exponential factor)d(X).

Here both sides are functions of X = (X1, X2, ,Xq) Via

o h(X) := exp(xat + Xot? 4+ ++- + x4t9) (€ T),

e @ is a function on a universal covering C9 -» J.
(A lot of choice and complicated normalization required.)
u := (log 7w © h)y,x, = (log 0)4,«, satisfies the KP equation
upon substituting x; =t 4+ x, X, =Yy, as well as a family of
PDEs, called the KP hierarchy, involving uy, fori > 2.

Problem. Is there a p-adic analogue for the Tate/Mumford
curves or curves with good ordinary reduction?



Sato expansion theorem

The tau function admits the following Sato expansion

tw(h) = > Pa(W)Sa(h)

e A= (A 2 A, 2--- > A) runs all partitions  (4j,r € N)
e P,(W) = the Plicker coordinate of W at A

= det(w;j_,-i);j for a good basis {w; = X w;tl}; of W
e S,(h) = the Schur polynomial of 2

= det(h,-i4;)j forh = Y hit!

Proof. Apply the Laplace expansio‘n of (infinite) determinant

I h H
to the definition 7y (h) = det(Hy — H = H = H,).

End of the survey of [A]. Now we discuss the Sato theory.



Quick review on Pl tcker embedding
The Grassmannian Gr(n,N) = {W c k" | dim W = n}

admits the Plucker embedding (0 <n <N, d = (l;l) -1)

Gr(n,N) c P%; W b (P (W) = det(Wiy )ij)u

ep=(1<pmp<-+<p <N)

e {w; = (wj);}i is a basis of W;
by which Gr(n, N) is identified with the closed subvariety of
P defined by the Pliicker bilinear relations.

Example. Gr(2,4) c P°is defined by

P12P34 = P13P24 + P14P23 = 0.



Pllcker relation and KP hierarchy

The Schur functions {S,(h)}, form an orthogonal basis of
the Hilbert space X of functions on I'; any £ € X is written as

£(h) = D" Pa(&)Sa(h).

Theorem (Sato). (1) For & € X; AW € Gr s.t. £ = 1y iff
{P.(&)}. satisfies the (infinite) Plucker relations.
(2) The Plicker relation is ‘equivalent’ to the KP hierarchy.
In other words,

e Gr c IP(X) is defined by the Pliicker relations,

e Gr c P(X) parametrize ‘all’ solutions to KP.

Combined with the relation of T to €, one gets solutions to KP
arising from the theta functions of algebraic curves.



Other problems (1)

e (Repetition) Establish a formula connecting the p-adic
tau and theta functions for the Tate/Mumford curves or
curves with good ordinary reduction.

e Deduce ‘p-adic theta solutions’ to the KP hierarchy,
using an answer to the above problem.

e |chikawa proved this for Mumford curves without using
the tau function.



Other problems (2)

Fay’s formula on the vanishing order of § at P along V
(P € ©, V:tangent vector of C embedded in J at P)
is re-proved in [SW] using Sato expansion theorem.

Birkenhake-Vanhaecke find the third geometric proof.

Anderson claims [A] is a p-adic analogue of this result
(although P is not on @ in this case). There is technical
difficulty to generalize his method to other situation.

Can one prove the p-adic analogue of Fay’s formula in
the style of Birkenhake-Vanhaecke, hopefully for more
general situation (general C and P)?



Other problems (3)

e When one considers a positive characteristic version,
it seems that the Drinfeld module naturally comes up.

e The |-adic Sato theory (with | # p or| = o) could be
useful to deal with p-torsion point.

e Forafixed W € Gr:'g, give a description of the image of
r- Gr;‘\_g »J; h b [hW]

in terms of the Néron model/formal group.



