Hecke Side

Galois Side

Computation 000000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Numerical study of Serre's modularity conjecture over imaginary quadratic fields with Magma

Shun'ichi Yokoyama (Kyushu University)

March 18, 2010 / KANT 2010

Hecke Side

Galois Side

Computation 000000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Today's outline

- Brief introduction to Serre's modularity conjecture over imaginary quadratic fields
 - Bianchi modular forms
 - Galois representations over imaginary quadratic fields
- Computational Approach (with Magma)
 - Cohomology computation
 - Searching number fields with prescribed ramification using (Targeted) Martinet Search

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Serre's modularity conjecture

- Relation between Galois representations and modular forms.
- Proved by Khare and Wintenberger. (over Q, 2007)

Theorem (Khare-Wintenberger, 2007)

Any odd, irreducible Galois representation over $\ensuremath{\mathbb{Q}}$

 $\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$

arises from a cusp form of type $(N(\rho), k(\rho), \epsilon(\rho))$

$$f = \sum_{n \ge 1} a_n q^n \quad \left(q = e^{2\pi i z}\right) \in S_{k(\rho)}(\Gamma, \epsilon(\rho)) \;.$$

i.e. $\operatorname{Tr}(\rho(\operatorname{Frob}_{l})) \equiv a_{l} \pmod{p}$ for all $l \nmid pN(\rho)$: prime

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Serre's modularity conjecture

Generalized conjecture (GL(2)-case)

	base field	associated to
Α	rat'l (odd)	weight 2 cusp form over ${\mathbb Q}$
В	rat'l (even)	Maass wave form
C	totally real	Hilbert modular form
D	imaginary quad.	Bianchi modular form (cohomological)

Preceding studies:

- Cremona(1980s): hyperbolic tessellation / modular symbols
- Figueiredo(1990s): homological approach computational approach
 - Torrey(2009): homological approach
 - Şengün(2008, 2009): cohomological approach

Introduction Hecke Side G 000

Numerical study of Serre's modularity conjecture over imaginary guadratic fields

Main Results

- K: imaginary quadratic field
 - Hecke Side : Bianchi modular form $H^1(\Gamma, E_k(\overline{\mathbb{F}}_p))$
 - Computing the space of eigenvalue system of small level and weight.
 - Galois Side : $\rho_K : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$
 - (Restrict ramification) Searching number fields L which satisfy $\operatorname{Gal}(L/\mathbb{Q}) \simeq A_4$, Construct $\rho_K : \operatorname{Gal}(L/K) \to \operatorname{SL}_2(\mathbb{F}_3)$ and compute $\operatorname{Tr}(\rho_K(\operatorname{Frob}_{\mathcal{P}}))$.
 - (Restrict ramification) Searching number fields L which satisfy $\operatorname{Gal}(L/K) \simeq A_5$, Compute ρ_K : $\operatorname{Gal}(L/K) \to \operatorname{SL}_2(\mathbb{F}_4)$:Now in progress.

Comparison

Computation 000000

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Hecke Side - Bianchi modular forms

Definition

A Bianchi modular form of level \mathcal{I} and weight (k_1, k_2) is a cohomology class in $H^1(\Gamma_1(\mathcal{I}), E_{k_1, k_2}(\mathbb{C}))$. It is cuspidal if it is in the cuspidal part $H^1_{cusp}(\Gamma_1(\mathcal{I}), E_{k_1, k_2}(\mathbb{C}))$.

•
$$\mathcal{I}$$
: ideal of \mathcal{O}_{K} .
• $\Gamma_{1}(\mathcal{I}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod \mathcal{I} \right\}$

- *E_k*(ℂ): Space of homogeneous polynomials of degree *k* in two variables with coefficients in ℂ.
- $E_{k_1,k_2}(\mathbb{C}) = E_{k_1}(\mathbb{C}) \otimes \overline{E}_{k_2}(\mathbb{C})$ (\overline{E} :complex conjugation).

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Hecke Side - Bianchi modular forms

Definition (mod p version)

A mod *p* Bianchi modular form of level \mathcal{I} and weight (k_1, k_2) is a cohomology class in $H^1(\Gamma_1(\mathcal{I}), E_{k_1,k_2}(\overline{\mathbb{F}}_p))$. It is cuspidal if it is in the cuspidal part $H^1_{cusp}(\Gamma_1(\mathcal{I}), E_{k_1,k_2}(\overline{\mathbb{F}}_p))$.

•
$$\mathcal{I}$$
: ideal of $\mathcal{O}_{\mathcal{K}}$.
• $\Gamma_1(\mathcal{I}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod \mathcal{I} \right\}$
• $p = \lambda \overline{\lambda}$

- *E_k*(𝔽_p): Space of homogeneous polynomials of degree *k* in two variables with coefficients in 𝔽_p.
- $E_{k_1,k_2}(\mathbb{F}_p) = E_{k_1}(\mathbb{F}_p) \otimes \overline{E}_{k_2}(\mathbb{F}_p)$ ($\overline{E} : \text{mod } \overline{\lambda} \text{ reduction }$).

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Serre's conjecture over K

Conjecture

An absolutely irreducible mod p Galois representation $\rho_{\mathcal{K}}: \operatorname{Gal}(\overline{\mathcal{K}}/\mathcal{K}) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$ comes from some eigenform (mod pBianchi cusp form).

i.e., there is a mod p Bianchi modular form $f \in H^1_{cusp}(\Gamma_1(\mathcal{I}), E(\overline{\mathbb{F}}_p))$ which is an eigenform for all Hecke operators s.t.

$$\operatorname{Tr}\left(\rho_{\mathcal{K}}(\operatorname{Frob}_{\lambda})\right) = a_{\lambda} , \operatorname{det}\left(\rho_{\mathcal{K}}(\operatorname{Frob}_{\lambda})\right) = b_{\lambda} \mathcal{N}(\lambda)$$

for all primes $\lambda \nmid p\mathcal{I}$ at which ρ is unramified. Here a_{λ} , b_{λ} are the eigenvalues of f under the Hecke operators T_{λ} , S_{λ} respectively:

$$T_{\lambda}f = a_{\lambda}f$$
, $S_{\lambda}f = b_{\lambda}f$.

Here $N(\lambda)$ is the norm of λ over \mathbb{Q} .

シック・ 川 ・ 山 ・ 山 ・ 山 ・ 山 ・ 山 ・

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Flow chart

0

Finite presentation of $\mathrm{PSL}_2(\mathcal{O}_K)$

• Case of
$$K = \mathbb{Q}(\sqrt{-1})$$
 :

$$PSL_2(\mathcal{O}_K) = \left\langle A, B, U \mid B^2 = (AB)^3 = (BUBU^{-1})^3 = AUA^{-1}U^{-1} \right\rangle$$
$$= (BU^2BU^{-1})^2 = (AUBAU^{-1}B)^2 = 1$$

where
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $U = \begin{pmatrix} 1 & 0 \\ \sqrt{-1} & 1 \end{pmatrix}$
to Case of $K = \mathbb{Q}(\sqrt{-2})$:

$$\mathrm{PSL}_2(\mathcal{O}_K) = \left\langle A, B, U \mid B^2 = (AB)^3 = AUAU^{-1} = (BU^{-1}BU)^2 = 1 \right\rangle$$

where
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $U = \begin{pmatrix} 1 & 0 \\ \sqrt{-2} & 1 \end{pmatrix}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Flow chart

Action of Hecke operator

$$(T_{\pi}c)(g) = \sum_{j} c(\alpha^{-1}h_{j}(g)\alpha)\alpha^{\iota}R_{j}^{-1}$$

where

•
$$c \in H^1(\Gamma, E_k)$$
,
• $g \in \Gamma$,
• $\alpha = \begin{pmatrix} \pi & 0 \\ 0 & 1 \end{pmatrix}$ where π is a prime of \mathcal{O}_K s.t. $N(\pi) = p$,
• $\alpha^{\iota} = \det(\alpha)\alpha^{-1}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Flow chart

•
$$P_M(n) = \begin{cases} M^{n-1} + \cdots + M^2 + M + 1 & n > 0, \\ -(M^{-n-1} + \cdots + M^2 + M + 1)M^n & n < 0 \end{cases}$$

$$(T_{\pi}c)(A) = c(A) \left[P_{A}(a)(U^{-b}B\alpha^{\iota}B + U^{b}\alpha^{\iota}) \right] + c(B) \left[(A^{a}U^{-b}B + 1)(\alpha^{\iota}B) \right] + c(U) \left[P_{U}(-b)B\alpha^{\iota}B + P_{U}(b)\alpha^{\iota} \right] ,$$

$$(T_{\pi}c)(U) = c(A) \left[\left(\sum_{0 \le j \le p-1} P_{A}(\operatorname{Re}(j))U^{\operatorname{Im}(j)}B\alpha^{\iota}BA^{j} \right) + P_{A}(-2b)U^{a}\alpha^{\iota} \right] + c(B) \left[\sum_{0 \le j \le p-1} \left(A^{\operatorname{Re}(j)}U^{\operatorname{Im}(j)}B + 1 \right) \left(\alpha^{\iota}BA^{j} \right) \right] + c(U) \left[\left(\sum_{0 \le j \le p-1} P_{U}(\operatorname{Im}(j))B\alpha^{\iota}BA^{j} \right) + P_{U}(a)\alpha^{\iota} \right]$$

Hecke Side

Galois Side

Computation 000000

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Flow chart

$$(T_{\pi}c)(B) = \sum_{1 \leq j \leq p-1} c(\alpha^{-1}h_{j}(B)\alpha)\alpha^{\iota}R_{j}^{-1}$$
$$= \sum_{1 \leq j \leq p-1} c\left(\begin{pmatrix} \sigma_{B}(j) & \frac{1+j\sigma_{B}(j)}{\pi} \\ -\pi & -j \end{pmatrix}\right)\alpha^{\iota}BA^{j},$$

+ word decomposition

 $M = \pm Q_m B Q_{m-1} \cdots B Q_2 B Q_1$ or $M = \pm B Q_m B Q_{m-1} \cdots B Q_2 B Q_1$ where $M \in PSL_2(\mathcal{O}_K)$ and Q_i is lower triangular:

$$Q_i = A^a U^b$$

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Result: Example

$K = \mathbb{Q}(\sqrt{-2}), \ T(\mathcal{P}) \frown H^1(\Gamma_0(\mathcal{I}), E_{1,1}(\mathbb{C})), \ N(\mathcal{I}) = 3, \ N(\mathcal{P}) < 100$

\mathcal{P}	eigenvalue	
$1 \pm \sqrt{2}i$	-2	
$3 \pm \sqrt{2}i$	14	
$3\pm 2\sqrt{2}i$	2	
$1\pm 3\sqrt{2}i$	-34	
$3\pm 4\sqrt{2}i$	-46	
$5\pm 3\sqrt{2}i$	14	
$3\pm5\sqrt{2}i$	-82	
$7 \pm 3\sqrt{2}i$	62	
$1\pm 6\sqrt{2}i$	-142	
$9\pm\sqrt{2}i$	158	
$9\pm 2\sqrt{2}i$	146	
$5\pm 6\sqrt{2}i$	-94	

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Result: Example

$K = \mathbb{Q}(\sqrt{-2}), \ T(\mathcal{P}) \frown H^1(\Gamma_0(\mathcal{I}), E_{3,3}(\mathbb{C})), \ N(\mathcal{I}) = 3, \ N(\mathcal{P}) < 100$

\mathcal{P}	eigenvalue		
$1 \pm \sqrt{2}i$	-14	6	
$3\pm\sqrt{2}i$	-46	-26	
$3\pm 2\sqrt{2}i$	-574	226	
$1 \pm 3\sqrt{2}i$	434	134	
$3\pm 4\sqrt{2}i$	-1246	994	
$5\pm 3\sqrt{2}i$	-3502	-1882	
$3\pm5\sqrt{2}i$	-238	-5018	
$7 \pm 3\sqrt{2}i$	-5134	8006	
$1\pm 6\sqrt{2}i$	9506	386	
$9\pm\sqrt{2}i$	11186	-2234	
$9\pm 2\sqrt{2}i$	5474	-10046	
$5\pm 6\sqrt{2}i$	-9982	8738	

Hecke Side

Galois Side

Computation 000000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Result: Example

$K = \mathbb{Q}(\sqrt{-1}), \ T(\mathcal{P}) \frown H^1(\Gamma_0(\mathcal{I}), E_{0,0}(\mathbb{F}_3)), \ N(\mathcal{I}) = 3, \ N(\mathcal{P}) < 100$

\mathcal{P}	eigenvalue	
3 ± 2 <i>i</i>	1	1
$4 \pm i$	1	1
$6 \pm i$	1	1
$5 \pm 4i$	-1	1
7 ± 2 <i>i</i>	1	1
6 ± 5 <i>i</i>	1	1
8 ± 3 <i>i</i>	1	1
8 ± 5 <i>i</i>	1	1
9 ± 4 <i>i</i>	-1	-1

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Dimension of space of Bianchi modular forms

	K = 0	$\mathbb{Q}(\sqrt{-2})$	$K = \mathbb{Q}(\sqrt{-7})$	
k	dim H^1	dim H^1_{cusp}	dim H^1	dim H^1_{cusp}
0	1	0	1	0
1	1	0	1	0
2	1	0	1	0
3	2	1	1	0
4	1	0	2	1
5	3	2	2	1
6	2	1	2	1
7	4	3	3	2
8	2	1	3	2
9	5	4	3	2
10	3	2	4	3
11	6	5	4	3
12	3	2	6	5
13	7	6	5	4
14	4	3	5	4
15	8	7	5	4

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Dimension formula (Known case: Grunewald et al.)

$$\dim H^{1}_{cusp}(\mathrm{SL}_{2}(\mathcal{O}_{K}), E_{k}) \geq \left(\frac{1}{24} \prod_{\rho \in \mathcal{R}} (\rho^{\nu_{\rho}} + 1) + c_{2}(-1)^{k+1}\right) (k+1) \\ -\nu_{K,k} \frac{h_{K}}{2} - 2^{|\mathcal{R}|-2} + c_{4}\epsilon_{k+2} + c_{3}\mu_{k+2} + \delta_{k,0}$$

where

• $c_2 = \begin{cases} 2^{|\mathcal{R}|-4} & p \equiv 1 \pmod{4} \text{ for all } p \in \mathcal{R}, \ p \neq 2 \\ 0 & \text{otherwise} \end{cases}$ • $c_3 = \begin{cases} 2^{|\mathcal{R}|-1} & p^{\nu_p} \equiv 1 \pmod{3} \text{ for all } p \in \mathcal{R} \\ 2^{|\mathcal{R}|-2} & 3 \in \mathcal{R} \text{ and } p^{\nu_p} \equiv 1 \pmod{3} \text{ for all } p \in \mathcal{R}, \ p \neq 3 \\ 0 & \text{otherwise} \end{cases}$ $\label{eq:c4} \bullet \ \ c_4 = \left\{ \begin{array}{ll} 2^{|\mathcal{R}|} & p \equiv 1 \text{ or } 3 \pmod{8} \text{ for all } p \in \mathcal{R} \\ 2^{|\mathcal{R}|-1} & 2 \in \mathcal{R} \text{ and } p^{\nu_p} \equiv 1 \text{ or } 3 \pmod{8} \text{ for all } p \in \mathcal{R}, \ p \neq 2 \\ 0 & \text{otherwise} \end{array} \right.$ • $h_K = CI(K)$ • $\mu_{K} = \mathbb{C}(\sqrt{\gamma})$ • $\nu_{K,k} = \begin{cases} 0 & K = \mathbb{Q}(\sqrt{-1}), \ k \equiv 0, 1 \pmod{3} \text{ or } K = \mathbb{Q}(\sqrt{-3}), \ k \equiv 0 \pmod{2} \\ 1 & \text{otherwise} \end{cases}$ • $\epsilon_k = \begin{cases} \frac{(-1)^{n/2}}{4} & k \equiv 0 \pmod{2} \\ 0 & \text{otherwise} \end{cases}$

Hecke Side

Galois Side •000000000

Computation 000000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Galois Side - Martinet Search

L/K: finite ext.

Searching number fields with prescribed ramification over K (unramified outside S: finite set of primes).

Let

$$f_{\alpha,K}(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n \in \mathcal{O}_K[x]$$

be the defining polynomial of L over K where

$$\mathsf{a}_i = \sum_{1 \leq j \leq m} \mathsf{a}_{ij} \omega_j, \; \mathsf{a}_{ij} \in \mathbb{Z} \; .$$

Coefficients a_k are bounded (a_{ij} 's are bounded).

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Galois Side - Martinet Search

Theorem (Martinet, Driver)

K: Number field of degree m, L/K: relative ext. of degree n, d_K , d_L : discriminant of K, L respectively, $\sigma_1, ..., \sigma_m$: embeddings of K into \mathbb{C} .

Then there exists $\alpha \in \mathcal{O}_L \smallsetminus \mathcal{O}_K$ s.t.

satisfies the following inequality:

$$\sum_{1 \le i \le mn} \left|\alpha_i\right|^2 \le \frac{1}{n} \sum_{1 \le j \le m} \left|\sigma_j\left(\operatorname{Tr}_{L/K}(\alpha)\right)\right|^2 + \gamma_{m(n-1)} \left(\frac{|d_L|}{n^m |d_K|}\right)^{1/m(n-1)}$$

where the α_i 's are conjugates of α .

a₁ (coefficient of f_{α,K}) can be chosen from a finite set of values ⊂ O_K.

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Galois Side - Martinet Search

Theorem (Martinet, Driver)

a₁ (coefficient of f_{α,K}) can be chosen from a finite set of values ⊂ O_K.

$$f_{\alpha,\mathcal{K}}(x) = x^{n} + a_{1}x^{n-1} + a_{2}x^{n-2} + \dots + a_{n-1}x + a_{n} \in \mathcal{O}_{\mathcal{K}}[x]$$
$$a_{1} \in \left\{ \sum_{1 \leq j \leq m} a_{1j}\omega_{j} \mid 0 \leq a_{11} \leq \left\lfloor \frac{n}{2} \right\rfloor, -\left\lfloor \frac{n-1}{2} \right\rfloor \leq a_{1j} \leq \left\lfloor \frac{n}{2} \right\rfloor \ (j \geq 2) \right\}$$

Choose a_1 and fix:

$$\sum_{1 \le i \le mn} |\alpha_i|^2 \le \frac{1}{n} \sum_{1 \le j \le m} |\sigma_j(a_1)|^2 + \gamma_{m(n-1)} \left(\frac{|d_L|}{n^m |d_K|}\right)^{1/m(n-1)} =: C_{a_1}$$

< ロ > < 団 > < 臣 > < 臣 > < 臣 > 三 = の < @</p>

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Galois Side - Martinet Search

Theorem (Driver)
• Range of
$$a_n$$
: $\sum_{1 \le i \le m} |\sigma_i(a_n)|^2 \le \left(\frac{C_{a_1}}{n}\right)^n$
• Range of a_k ($2 \le k \le n-1$): $s_k = \sum_{1 \le j \le n} a_j^k$
 a_i, s_i ($1 \le i \le k-1$): given
 $\overrightarrow{b} = -\sum_{1 \le j \le k-1} a_{k-j}s_j$, $\overrightarrow{a_k} = \frac{1}{k} \left(\overrightarrow{b} - \overrightarrow{s_k}\right)$

and s_k can be bounded:

$$\sum_{1\leq i\leq m} |\sigma_i(s_k)|^2 \leq C_{a_1}^k \; .$$

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Galois Side - Martinet Search

Example: *a_n*'s bound

$$-\frac{\sqrt{\frac{1}{2^{n-2}}\left(\frac{C_{a_1}}{n}\right)^n}}{(\omega-\overline{\omega})i} \le a_{n2} \le \frac{\sqrt{\frac{1}{2^{n-2}}\left(\frac{C_{a_1}}{n}\right)^n}}{(\omega-\overline{\omega})i}$$

and

$$\frac{-\sqrt{\frac{1}{2^{n-2}}\left(\frac{C_{a_1}}{n}\right)^n + (\omega - \overline{\omega})^2 a_{n2}^2} - (\omega + \overline{\omega})a_{n2}}{2} \le a_{n1} \le \frac{\sqrt{\frac{1}{2^{n-2}}\left(\frac{C_{a_1}}{n}\right)^n + (\omega - \overline{\omega})^2 a_{n2}^2} - (\omega + \overline{\omega})a_{n2}}{2}$$

Hecke Side

Galois Side

Computation 000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへ⊙

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Numerical Data

Result A

List of L which satisfies

- $\operatorname{Gal}(L/\mathbb{Q}) \simeq A_4$
- Unramified outside $S = \{2,3\}$ over $\mathbb Q$

consists of 1 element:

•
$$P_L(x) = x^4 - 2x^3 + 6x^2 - 4x + 2$$

$$\rho^{proj}$$
: $\operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{PSL}_2(\mathbb{F}_3)$
 ρ : $\operatorname{Gal}(L/\mathbb{Q}) \to \operatorname{SL}_2(\mathbb{F}_3)$
 ρ_K : $\operatorname{Gal}(L/K) \to \operatorname{SL}_2(\mathbb{F}_3)$ (Rosengren's idea)

Hecke Side

Galois Side 000000●000

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Numerical Data : comparison

\mathcal{P}	$N(\mathcal{P})$	$\operatorname{Tr}(\rho_{\mathcal{K}}(\operatorname{Frob}_{\mathcal{P}}))$]
2+i	5	1	-1]
3	9	-1	-1	\mathcal{P}
3 + 2i	13	1	1	$3\pm 2i$
4+i	17	1	1	$4 \pm i$
5 + 2 <i>i</i>	29	1	-1	$6 \pm i$
6 + <i>i</i>	37	1	1	5 ± 4 <i>i</i>
5 + 4i	41	-1	1	$7\pm 2i$
7	49	-1	-1	6 ± 5 <i>i</i>
7 + 2i	53	1	1	8 ± 3 <i>i</i>
6 + 5 <i>i</i>	61	1	1	8 ± 5 <i>i</i>
8 + 3 <i>i</i>	73	1	1	9 ± 4 <i>i</i>
8 + 5 <i>i</i>	89	1	1	
9 + 4i	97	-1	-1	

 $\mathcal{K} = \mathbb{Q}(\sqrt{-1}), \ \mathcal{T}(\mathcal{P}) \curvearrowright \mathcal{H}^1(\Gamma_0(\mathcal{I}), \mathcal{E}_{0,0}(\mathbb{F}_3))$

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

Hecke Side

Galois Side 0000000●00

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Numerical Data

Result B

Lists of L which are unramified outside S over K (degree 5) :

K	S	<i>⋕ of L</i>	$\operatorname{Gal}(L^g/\mathbb{Q})$
$\mathbb{Q}(\sqrt{-1})$	{2,3}	14	$T_5, T_{22}, T_{41}, T_{43}$
$\mathbb{Q}(\sqrt{-2})$	{2,3}	42	$T_5, T_{22}, T_{41}, T_{43}$
$\mathbb{Q}(\sqrt{-3})$	{2,3}	12	$T_5, T_{22}, T_{40}, T_{41}, T_{43}$
$\mathbb{Q}(\sqrt{-3})$	$\{3, 11\}$	3	T_1, T_{11}
$\mathbb{Q}(\sqrt{-11})$	$\{3, 11\}$	3	T_1, T_{11}
$\mathbb{Q}(\sqrt{-7})$	$\{7, 11\}$	5	T_1, T_2, T_6, T_{22}
$\mathbb{Q}(\sqrt{-11})$	$\{7, 11\}$	3	T_1, T_3, T_{22}

up to isom. L^g : Galois closure of L over \mathbb{Q}

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Numerical Data

$\mathsf{Result}\ \mathsf{C}$

From the lists of Result B: List of L which satisfies $Gal(L/K) \simeq A_5$ consists of 4 elements:

•
$$K = \mathbb{Q}(\sqrt{-3}), S = \{3, 11\}$$

 $x^5 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)x^4 + (-9 + 2\sqrt{3}i)x^3 - 3x^2 + (15 - 15\sqrt{3}i)x + (27 - 6\sqrt{3}i)$
• $K = \mathbb{Q}(\sqrt{-3}), S = \{3, 11\}$
 $x^5 + \left(-\frac{5}{2} + \frac{\sqrt{3}}{2}i\right)x^4 - \sqrt{3}ix^3 + \left(\frac{5}{2} + \frac{\sqrt{3}}{2}i\right)x^2 - 4x + \left(\frac{3}{2} - \frac{5\sqrt{3}}{2}i\right)$
• $K = \mathbb{Q}(\sqrt{-11}), S = \{3, 11\}$
 $x^5 + \left(-\frac{5}{2} + \frac{\sqrt{11}}{2}i\right)x^4 + (8 - \sqrt{11}i)x^3$
 $+ \left(-\frac{19}{2} + \frac{17\sqrt{11}}{2}i\right)x^2 + (-32 - 8\sqrt{11}i)x + \left(\frac{35}{2} - \frac{7\sqrt{11}}{2}i\right)$
• $K = \mathbb{Q}(\sqrt{-11}), S = \{3, 11\}$
 $x^5 + (-2 + \sqrt{11}i)x^4 + \left(\frac{1}{2} - \frac{5\sqrt{11}}{2}i\right)x^3 + (24 + 2\sqrt{11}i)x^2 + (-7 + 14\sqrt{11}i)x + (-32 - 2\sqrt{11}i)$

Hecke Side

Galois Side

Computation 000000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Future Works

- Construct $\rho_{\mathcal{K}}$: $\operatorname{Gal}(L/\mathcal{K}) \to \operatorname{SL}_2(\mathbb{F}_4)$ and compute $\operatorname{Tr}(\rho_{\mathcal{K}}(\operatorname{Frob}_{\lambda}))$ from the Result C.
- Find more examples of "Matching".
- Extend the database of Hecke Side and Galois Side.

Hecke Side

Galois Side

Computation •00000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

What's Magma?

- Computer Algebra Software package.
- Magma project has been headed by John Cannon (Univ. of Sydney) in Australia.
 - Designed to solve computationally hard problems in algebra, number theory, geometry, and combinatorics.
 - Not free but not for profit either.
- Reference:
 - Wieb Bosma and John Cannon, *Discovering Mathematics with Magma: Reducing the Abstract to the Concrete* (Algorithms and Computation in Mathematics)

Hecke Side

Galois Side

Computation 00000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Demonstration

$$f(x) = x^4 - 2x^3 + 6x^2 - 4x + 2$$
 (from Result A)

>
$$f:=x^4 - 2 * x^3 + 6 * x^2 - 4 * x + 2;$$

>> f:= $x^4 - 2 * x^3 + 6 * x^2 - 4 * x + 2$; User error: Identifier 'x' has not been declared or assigned

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Demonstration

$$f(x) = x^4 - 2x^3 + 6x^2 - 4x + 2$$
 (from Result A)

```
> PA<x>:=PolynomialAlgebra(Rationals());
> f := x^4 - 2 * x^3 + 6 * x^2 - 4 * x + 2:
> N<a>:=NumberField(f);
> MinimalPolynomial(a) eq f;
true
> a^{7}:
-6*a^3 + 60*a^2 - 44*a + 24
> 3/a:
1/2*(-3*a^3+6*a^2-18*a+12)
> GaloisGroup(N);
Permutation group acting on a set of cardinarity 4
Order = 12 = 2^2 * 3
(1, 2)(3, 4)
(1, 2, 3)
. . .
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Demonstration

```
Explicit isomorphism: A_5 \simeq SL_2(\mathbb{F}_4)
```

```
> F<w>:=GF(4);
```

- > H:=SL(2,F);
- > G:=Alt(5);
- > IsIsomorphic(G,H);

```
true Homomorphism of GrpPerm:
```

```
G, Degree 5, Order 2<sup>2</sup> * 3 * 5 into SL(2, GF(2, 2)) induced by
(3, 4, 5) |--> [ 0 w]
[w<sup>2</sup>1]
```

```
(1, 2, 3) | --> [w^2 0]
[w^2 w]
```

>

Hecke Side

Galois Side

Computation 000000

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Demonstration

```
• K = \mathbb{O}(\sqrt{-1})
     • f(x) = x^5 + (-1 + 2\sqrt{-1})x^4 + (-6 + 2\sqrt{-1})x^2 + (-4 - 7\sqrt{-1})x - 3\sqrt{-1}
     • M: splitting field of f over K
         Check Gal(M/K) \simeq A_5
> K<i>:=ext<Rationals()|Polynomial([1,0,1])>;
> MinimalPolvnomial(i):
(1^2 + 1)^2
> _ <x>:=PolynomialAlgebra(K);
> f:=x^5 + (-1 + 2 * i) * x^4 + (-6 + 2 * i) * x^2 + (-4 - 7 * i) * x - 3 * i;
> GaloisGroup(f);
Permutation group acting on a set of cardinality 5
Order = 60 = 2^2 * 3 * 5
(3, 4, 5)
(1, 2, 3)
[52*\$.1^2 - 24*\$.1 + O(13^2), 75*\$.1^2 - 77*\$.1 - 82 + O(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*\$.1^2 - 60(13^2), 42*
68* + 43 + 0(13<sup>2</sup>), 49 + O(13^2), 20 + O(13^2)]
GaloisData over Z Prime Ideal
Two element generators:
[13, 0]
[8, 1] - relative case
                                                                                                            < ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
```

Hecke Side

Galois Side

Computation 00000

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Numerical study of Serre's modularity conjecture over imaginary quadratic fields

Demonstration

More info.

- Magma: Computer Algebra System http://magma.maths.usyd.edu.au/magma/
- Online Demo (20 seconds limit) http://magma.maths.usyd.edu.au/calc/