MMA Advanced Lecture I Handout 4

Teaching Assistant: Shun'ichi Yokoyama (Doctor's 1st)

Global COE Program TRA(Talented Research Assistant)

This handout is available from my webpage:

http://yokoemon.web.fc2.com/education.html

Now planning to move.

Announcement

- **HOMEWORK SUBMISSION** or given by TEST. Please note.
- Slides of Lecture III are (re-)updated, so please download if you want. Today's slides (given in the previous class) are not yet, but will be soon.

Warming Up to do homework, check understanding.

- 1. Check the following inequalities, where the order on the variable is implicitely $X_1 \succ X_2 \succ X_3$:
 - (a) $X_1^3 X_2^2 X_3 \prec_{lex} X_1^3 X_2^2 X_3^4$
 - (b) $X_1 X_2 X_3^5 \prec_{grlex} X_1 X_2^2 X_3^4$
 - (c) $X_1^4 X_2 X_3^3 \prec_{qrevlex} X_1 X_2^5 X_3^2$
- 2. Rewriting of the following polynomial

$$f(X, Y, Z) = 4XY^2Z + 4Z^2 - 5X^3 + 7X^2Z^2$$

ordering the terms using the...

- (a) lex order: $f = -5X^3 + 7X^2Z^2 + 4XY^2Z + 4Z^2$
- (b) grlex order: $f = 7X^2Z^2 + 4XY^2Z 5X^3 + 4Z^2$
- (c) grevlex order: $f = 4XY^2Z + 7X^2Z^2 5X^3 + 4Z^2$

(Can you check the above using Mathematica ?)

- 3. Let f as before (#2) and let \succ be \succ_{lex} ,
 - (a) Multi-degree mdeg(f) = (3, 0, 0)
 - (b) Leading coefficient LC(f) = -5
 - (c) Leading monomial $LM(f) = X^3$
 - (d) Leading term $LT(f) = -5X^3$

4. Dividing $f = xy^2 + 1$ by $f_1 = xy + 1$ and $f_2 = y + 1$ (using lex order with $x \succ y$), check the following division:

$$xy^{2} + 1 = y(xy + 1) + (-1)(y + 1) + 2$$

$$a_{1}:$$

$$a_{2}:$$

$$f_{1} = xy + 1$$

$$f_{2} = y + 1$$

- 5. Do and check the following (explained on the 5/13's blackboard):
 - (a) Divide $f = x^2y + xy^2 + y^2$ by $f_1 = xy 1$ and $f_2 = y^2 1$, using the lex order with $x \succ y$. # Solution is : $f = (x + y)(xy 1) + 1 \cdot (y^2 1) + x + y + 1$
 - (b) Divide f by f₁ = y² 1 and f₂ = xy 1, using the lex order with x ≻ y. This is the same as (a) except that we have changed the order of the divisors. **# Solution is :** f = (x + 1)(y² 1) + x(xy 1) + 2x + 1
 - (c) Check that the remainder of (b) is <u>different</u> from what we got in (a). 1

¹Thus, we must conclude that the division algorithm is an imperfect generalization of its univariate counterpart. To remedy this situation, in dealing with a collection of polynomials $f_1, ..., f_s \in k[x_1, ..., x_n]$, it is frequently desirable to pass to the ideal I they generate. This allows the possibility of going from $f_1, ..., f_s$ to a different generating set for I. So we can still ask whether there might be a good generating set for I. For such a set, we would want the remainder r on division by the good generators to be uniquely determined and the condition r = 0 should be equivalent to membership in the ideal. **Gröbner basis** have exactly these good properties.