MMA 数学特論 I。多項式系のアルゴリズム：グレブナー基底 \＆消去法

\qquad

Practice test III：Around the Buchberger algorithm
－You can use any theorem，proposition or corollary of the class lectures，just by citing its number inside the corresponding lecture：（example：＂Lect II，Cor．1＂refers to the Corollary 1 of Lecture II，that is the Primitive Element Theorem）．

Exercise 1 Write the correct answer in the table below，and then compute the S－ polynomials afterwards．

$$
\begin{aligned}
f(x, y, z) & =x^{3} z^{5}-x^{2} y z^{5}+2 x y z^{6} \\
g(x, y, z) & =y^{3}-y^{2} z+3 x y^{2} .
\end{aligned}
$$

\prec is \rightarrow	$\operatorname{grlex}(x, y, z)$	$\operatorname{grlex}(z, x, y)$	$\operatorname{grevlex}(y, x, z)$
$\operatorname{LT}_{\prec}(f)$			
$\operatorname{LT}_{\prec}(g)$			
$\operatorname{LCM}\left(\operatorname{LM}_{\prec}(f), \operatorname{LM}_{\prec}(g)\right)$			

Computation of $S_{\prec}(f, g)$ for $\prec=\prec_{\text {grlex }(x, y, z)}$ ：

Computation of $S_{\prec}(f, g)$ for $\prec=\prec_{\operatorname{grevlex}(z, x, y)}$ ：

Computation of $S_{\prec}(f, g)$ for $\prec=\prec_{\text {grlex }(y, x, z)}$ ：

Exercise 2 Let f and g be two non-zero polynomials in $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, and let \prec be a monomial order. Let $\gamma \in \mathbb{N}^{n}$ be such that $X^{\gamma}=\operatorname{LCM}\left(\operatorname{LM}_{\prec}(f), \mathrm{LM}_{\prec}(g)\right)$.
Question 1: Show that $\mathrm{Lm}_{\prec}\left(S_{\prec}(f, g)\right) \prec X^{\gamma}(!!\prec$ is a strict inequality, not large like \preccurlyeq, i.e we have $\alpha \preccurlyeq \alpha$ but $\alpha \nprec \alpha$).

Answer:

Question 2: Prove that if $X^{\alpha} \prec X^{\beta}$, then $X^{\beta} \nmid X^{\alpha}$. (Advice: the properties of a monomial order can be useful \rightarrow Lect. IV, Slide 4).
Answer:
 Answer:

Exercise 3 Given $F=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, a monomial order \prec and $f \in$ $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, we know from the Property (c) of the division algorithm (Lect. III, Slide 18) that we have:

$$
\exists \sigma \in \mathfrak{S}_{s} \text { such that } \operatorname{NF}\left(f,\left[f_{\sigma(1)}, \ldots, f_{\sigma(s)}\right]\right)=0 \Rightarrow f \rightarrow_{F} 0,
$$

but \Leftarrow is not true in general. Consider the example:

$$
f_{1}=x^{2} y^{3}+2 x y^{2}-3 x^{2} y+y^{3} \quad f_{2}=x^{3}+3 x y .
$$

Given $a_{1}=x^{2}+3 x+y^{2}-1$ and $a_{2}=-y^{3}+2 y^{3} x+x y-1$, let $f=a_{1} f_{1}+a_{2} f_{2}$:
$f=-x^{3}-3 x y+3 x^{2} y-9 x^{3} y-2 x^{4} y-2 x y^{2}+9 x^{2} y^{2}+2 x^{3} y^{2}-y^{3}+3 x y^{3}-3 x^{2} y^{3}+2 x^{3} y^{3}+$ $3 x^{4} y^{3}-x y^{4}+6 x^{2} y^{4}+y^{5}+x^{2} y^{5}$.
Question 1: Given $\prec=\operatorname{grlex}(x, y)$, show that $f \rightarrow_{\left\{f_{1}, f_{2}\right\}} 0$.

Answer: (Advice: no computations are necessary! Only the definition of f and what means " $f \rightarrow 0$ " are useful)

Question 2: However show that $\mathrm{NF}_{\prec}\left(f,\left[f_{1}, f_{2}\right]\right) \neq 0$ and $\mathrm{NF}_{\prec}\left(f,\left[f_{2}, f_{1}\right]\right) \neq 0\left(i . e . f, f_{1}, f_{2}\right.$ does not verify Property (\star) for \prec).
The division is quite complicated, so you can use Mathematica (it is very easy to use with the documentation. Check the function "PolynomialReduce". See the documentation).
Answer: (write only the remainders that you found with Mathematica...)

Exercise 4 Is the system $F=\left\{f_{1}, f_{2}\right\}$ a Gröbner basis for the ideal $I=\left\langle f_{1}, f_{2}\right\rangle$ with respect to $\prec_{\operatorname{grlex}(x, y)}$?

$$
f_{1}=-x+x y \quad f_{2}=x+x^{2}
$$

We want to apply the Buchberger algorithm, and check that all necessary pairs reduce to 0 .
Question 1: There is only one pair in this Exercise: $(1,2)$. Is the first test (Proposition 2) applies for this pair ?

Answer:

Compute the S-polynomial $s:=S_{\prec}\left(f_{1}, f_{2}\right)$.
Answer:

Question 2: Compute the division of s by one of the sequence $\left[f_{1}, f_{2}\right]$ or $\left[f_{2}, f_{1}\right]$.
Answer:

Conclude with Theorem 1 (of Lect. V)

Exercise 5 We want to compute a Gröbner basis of the polynomial system $F=$ $\left\{f_{1}, f_{2}\right\} \subset \mathbb{k}[x, y]$ for the monomial order $\prec=\prec_{\text {lex }(x, y)}$.

$$
f_{1}=y^{2}-y, \quad f_{2}=-x^{2} y+x^{2}+2 x y-x+y .
$$

We will follow the Buchberger algorithm, version 3 (Lect. V, Slide 19).
Question 1: At the beginning, the set of pair of indices B is simply $B=\{(1,2)\}$.
Check if the tests 1 or 2 (Proposition 2 or 4) permits to say that $S\left(f_{1}, f_{2}\right) \rightarrow_{F} 0$ without computation.

Answer: Test 1 (Proposition 2) ?
Test 2 (Proposition 4) ?
If not, compute the S-polynomial $\tilde{f}_{3}=S\left(f_{1}, f_{2}\right)$.

Check briefly if all the monomials of \tilde{f}_{3} are in $\bar{\Delta}$ (Δ-sets corresponding to $\left[f_{1}, f_{2}\right]$), and if not compute the division of \tilde{f}_{3} by $\left[f_{1}, f_{2}\right]$.

Let $f_{3}=\operatorname{NF}\left(\tilde{f}_{3},\left[f_{1}, f_{2}\right]\right)$. You should not find $f_{3}=0$. Hence, by Step 8 of the algorithm: $G=G \cup\left\{f_{3}\right\}$. And by Steps 9 and 11: $B=\{(1,3),(2,3)\}$
Question 2: Next, select the pair $(1,3)$ in B. Check that neither Test 1 nor Test 2 work for this pair:

Test 1 ?
Test 2 ?

Compute $\tilde{f}_{4}=S\left(f_{1}, f_{3}\right)$.

Check briefly that there is at least one monomial occurring in \tilde{f}_{4} that is not in $\bar{\Delta}=$ $\mathbb{N}^{2}-\left(\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}\right)\left(\Longleftrightarrow \operatorname{NF}\left(\tilde{f}_{4},\left\{f_{1}, f_{2}, f_{3}\right\}\right) \neq \tilde{f}_{4}\right)$.

Compute the division of \tilde{f}_{4} by $\left[f_{1}, f_{2}, f_{3}\right]$.

Let f_{4} the remainder $\operatorname{NF}\left(\tilde{f}_{4},\left[f_{1}, f_{2}, f_{3}\right]\right)$. You should find $f_{4}=0$. By Step 9 and 11 , we have: $B=\{(2,3)\}$.
Question 3 Next, select the pair $(1,3)$ in B. Check that neither Test 1 nor Test 2 work for this pair:

Test 1 ?
Test 2 ?

Compute $\tilde{f}_{4}=S\left(f_{1}, f_{3}\right)$.

Check briefly that there is at least one monomial occurring in \tilde{f}_{4} that is not in $\bar{\Delta}=$ $\mathbb{N}^{2}-\left(\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}\right)\left(\Longleftrightarrow \operatorname{NF}\left(\tilde{f}_{4},\left\{f_{1}, f_{2}, f_{3}\right\}\right) \neq \tilde{f}_{4}\right)$.

Compute the division of \tilde{f}_{4} by $\left[f_{1}, f_{2}, f_{3}\right]$.

Let f_{4} the remainder $\operatorname{NF}\left(\tilde{f}_{4},\left[f_{1}, f_{2}, f_{3}\right]\right)$. You should not find $f_{4}=0$. By Step 8 , we have $G=G \cup\left\{f_{4}\right\}$, and by Step 9 and 11, we have: $B=B-\{(2,3)\}=\{(1,4),(2,4),(3,4)\}$. Question 4 Consider next the pair $(1,4)$ in B. Does Test 1 or Test 2 apply for $\left(f_{1}, f_{4}\right)$? Answer:

Actually, it is true. So by Step $10 B=B-\{(1,4)\}=\{(2,4),(3,4)\}$.
Question 5 For the pair $(2,4)$, check if Test 1 works.
Test 1 ?
Write all the pairs that are not in B, and try to see if Test 2 works.

Pairs:
Test 2 works ?
Compute the S-polynomial $\tilde{f}_{5}=S\left(f_{2}, f_{4}\right)$
Answer:

Compute the division of \tilde{f}_{5} by $\left[f_{1}, f_{2}, f_{3}, f_{4}\right]$ (it is not difficult).

You should find $\operatorname{NF}\left(\tilde{f}_{5},\left[f_{1}, f_{2}, f_{3}, f_{4}\right]\right)=0$, so by Step $10, B=B-\{(2,4)\}=\{(3,4)\}$.

Question 6 Last, consider the pair $(3,4)$. Show that Test 1 does not work but Test 2 works. Hence it comes $B=\emptyset$ and $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ is a Gröbner basis of $\langle F\rangle$ for lex (x, y).

Answer:

Exercise 6 We consider a sequence of polynomials $f_{1}, \ldots, f_{s} \subset \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, and a monomial order \prec.

Let $f \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, and $f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r$ the division equality.
Question 1 One property of the division, is: $a_{i} \neq 0 \Rightarrow \operatorname{LM}_{\prec}\left(a_{i} f_{i}\right) \preccurlyeq \mathrm{LM}_{\prec}(f)$ (Lect. III, Slide 18 Property (c)).

Let $\mathcal{I}(f)=\left\{i \mid \operatorname{LM}_{\prec}\left(a_{i} f_{i}\right)=\operatorname{LM}_{\prec}(f)\right\}$. Show that $\mathcal{I}(f) \neq \emptyset$.
Answer:

Question 2 Then show that $\operatorname{LT}_{\prec}(f)=\sum_{i \in \mathcal{I}(f)} \operatorname{LT}\left(a_{i} f_{i}\right)$.
Answer:

