MMA 数学特論 I。多項式系のアルゴリズム: グレブナー基底 & 消去法 担当:DAHAN Xavier June 10th, 2010 TRA: 横山 Shun'ichi NAME:_____

Practice test III: Around the Buchberger algorithm

• You can use any theorem, proposition or corollary of the class lectures, just by citing its number inside the corresponding lecture: (example: "Lect II, Cor. 1" refers to the Corollary 1 of Lecture II, that is the Primitive Element Theorem).

Exercise 1 Write the correct answer in the table below, and then compute the *S*-polynomials afterwards.

$$f(x, y, z) = x^{3}z^{5} - x^{2}yz^{5} + 2xyz^{6}$$

$$g(x, y, z) = y^{3} - y^{2}z + 3xy^{2}.$$

\prec is \rightarrow	grlex(x, y, z)	grlex(z, x, y)	grevlex(y, x, z)
$LT_{\prec}(f)$			
$LT_{\prec}(g)$			
$\boxed{\operatorname{lcm}(\operatorname{lm}_{\prec}(f),\operatorname{lm}_{\prec}(g))}$			

Computation of $S_{\prec}(f,g)$ for $\prec = \prec_{grlex(x,y,z)}$:

Computation of $S_{\prec}(f,g)$ for $\prec = \prec_{grevlex(z,x,y)}$:

Computation of $S_{\prec}(f,g)$ for $\prec = \prec_{grlex(y,x,z)}$:

Exercise 2 Let f and g be two non-zero polynomials in $\mathbb{k}[X_1, \ldots, X_n]$, and let \prec be a monomial order. Let $\gamma \in \mathbb{N}^n$ be such that $X^{\gamma} = \operatorname{LCM}(\operatorname{LM}_{\prec}(f), \operatorname{LM}_{\prec}(g))$. Question 1: Show that $\operatorname{LM}_{\prec}(S_{\prec}(f,g)) \prec X^{\gamma}$ (!! \prec is a strict inequality, not large like \preccurlyeq , *i.e* we have $\alpha \preccurlyeq \alpha$ but $\alpha \not\prec \alpha$). Answer:

Question 2: Prove that if $X^{\alpha} \prec X^{\beta}$, then $X^{\beta} \nmid X^{\alpha}$. (<u>Advice</u>: the properties of a monomial order can be useful \rightarrow Lect. IV, Slide 4). Answer:

Question 3: Deduce that <u>both</u> monomials LM(f) and LM(g) can not divide LM(S(f,g)). Answer:

Exercise 3 Given $F = \{f_1, \ldots, f_s\} \subset \mathbb{k}[X_1, \ldots, X_n]$, a monomial order \prec and $f \in \mathbb{k}[X_1, \ldots, X_n]$, we know from the Property (c) of the division algorithm (Lect. III, Slide 18) that we have:

$$\exists \sigma \in \mathfrak{S}_s \text{ such that } NF(f, [f_{\sigma(1)}, \dots, f_{\sigma(s)}]) = 0 \implies f \to_F 0,$$

but \leftarrow is <u>not true</u> in general. Consider the example:

$$f_1 = x^2y^3 + 2xy^2 - 3x^2y + y^3$$
 $f_2 = x^3 + 3xy.$

Given $a_1 = x^2 + 3x + y^2 - 1$ and $a_2 = -y^3 + 2y^3x + xy - 1$, let $f = a_1f_1 + a_2f_2$:

$$\begin{split} f &= -x^3 - 3xy + 3x^2y - 9x^3y - 2x^4y - 2xy^2 + 9x^2y^2 + 2x^3y^2 - y^3 + 3xy^3 - 3x^2y^3 + 2x^3y^3 + 3x^4y^3 - xy^4 + 6x^2y^4 + y^5 + x^2y^5. \\ \text{Question 1: Given } \prec &= grlex(x,y), \text{ show that } f \to_{\{f_1,f_2\}} 0. \end{split}$$

<u>Answer:</u> (Advice: no computations are necessary! Only the definition of f and what means " $f \rightarrow 0$ " are useful)

Question 2: However show that $NF_{\prec}(f, [f_1, f_2]) \neq 0$ and $NF_{\prec}(f, [f_2, f_1]) \neq 0$ (*i.e.* f, f_1, f_2 does not verify Property (*) for \prec).

The division is quite complicated, so you can use Mathematica (it is very easy to use with the documentation. Check the function "PolynomialReduce". See the <u>documentation</u>). Answer: (write only the remainders that you found with Mathematica...)

Exercise 4 Is the system $F = \{f_1, f_2\}$ a Gröbner basis for the ideal $I = \langle f_1, f_2 \rangle$ with respect to $\prec_{grlex(x,y)}$?

 $f_1 = -x + xy \qquad \qquad f_2 = x + x^2$

We want to apply the Buchberger algorithm, and check that all *necessary* pairs reduce to 0.

Question 1: There is only *one* pair in this Exercise: (1, 2). Is the first test (Proposition 2) applies for this pair ?

Answer:

Compute the S-polynomial $s := S_{\prec}(f_1, f_2)$. Answer:

Question 2: Compute the division of s by one of the sequence $[f_1, f_2]$ or $[f_2, f_1]$. Answer: Conclude with Theorem 1 (of Lect. V)

Exercise 5 We want to compute a Gröbner basis of the polynomial system $F = \{f_1, f_2\} \subset \mathbb{k}[x, y]$ for the monomial order $\prec = \prec_{lex(x,y)}$.

$$f_1 = y^2 - y,$$
 $f_2 = -x^2y + x^2 + 2xy - x + y.$

We will follow the Buchberger algorithm, version 3 (Lect. V, Slide 19).

Question 1: At the beginning, the set of pair of indices B is simply $B = \{(1,2)\}.$

Check if the tests 1 or 2 (Proposition 2 or 4) permits to say that $S(f_1, f_2) \rightarrow_F 0$ without computation.

<u>Answer:</u> Test 1 (Proposition 2) ?

Test 2 (Proposition 4)?

If not, compute the S-polynomial $\tilde{f}_3 = S(f_1, f_2)$.

Check briefly if all the monomials of \tilde{f}_3 are in $\overline{\Delta}$ (Δ -sets corresponding to $[f_1, f_2]$), and if not compute the division of \tilde{f}_3 by $[f_1, f_2]$.

Let $f_3 = NF(\tilde{f}_3, [f_1, f_2])$. You should not find $f_3 = 0$. Hence, by Step 8 of the algorithm: $G = G \cup \{f_3\}$. And by Steps 9 and 11: $B = \{(1, 3), (2, 3)\}$

Question 2: Next, select the pair (1,3) in *B*. Check that neither Test 1 nor Test 2 work for this pair:

Test 1 ?

Test 2 ?

Compute $\tilde{f}_4 = S(f_1, f_3)$.

Check briefly that there is at least one monomial occurring in \tilde{f}_4 that is not in $\overline{\Delta} = \mathbb{N}^2 - (\Delta_1 \cup \Delta_2 \cup \Delta_3)$ ($\iff \operatorname{NF}(\tilde{f}_4, \{f_1, f_2, f_3\}) \neq \tilde{f}_4$).

Compute the division of \tilde{f}_4 by $[f_1, f_2, f_3]$.

Let f_4 the remainder NF $(\tilde{f}_4, [f_1, f_2, f_3])$. You should find $f_4 = 0$. By Step 9 and 11, we have: $B = \{(2,3)\}$.

Question 3 Next, select the pair (1,3) in B. Check that neither Test 1 nor Test 2 work for this pair:

Test 1 ? Test 2 ?

Compute $\tilde{f}_4 = S(f_1, f_3)$.

Check briefly that there is at least one monomial occurring in \tilde{f}_4 that is not in $\overline{\Delta} = \mathbb{N}^2 - (\Delta_1 \cup \Delta_2 \cup \Delta_3)$ ($\iff \operatorname{NF}(\tilde{f}_4, \{f_1, f_2, f_3\}) \neq \tilde{f}_4).$

Compute the division of \tilde{f}_4 by $[f_1, f_2, f_3]$.

Let f_4 the remainder NF(\tilde{f}_4 , $[f_1, f_2, f_3]$). You should not find $f_4 = 0$. By Step 8, we have $G = G \cup \{f_4\}$, and by Step 9 and 11, we have: $B = B - \{(2,3)\} = \{(1,4), (2,4), (3,4)\}$. Question 4 Consider next the pair (1,4) in B. Does Test 1 or Test 2 apply for (f_1, f_4) ? <u>Answer:</u>

Actually, it is true. So by Step 10 $B = B - \{(1,4)\} = \{(2,4), (3,4)\}.$ Question 5 For the pair (2,4), check if Test 1 works.

Test 1 ?

Write all the pairs that are *not* in B, and try to see if Test 2 works.

Pairs: Test 2 works ? Compute the S-polynomial $\tilde{f}_5 = S(f_2, f_4)$ <u>Answer:</u>

Compute the division of \tilde{f}_5 by $[f_1, f_2, f_3, f_4]$ (it is not difficult).

You should find NF $(\tilde{f}_5, [f_1, f_2, f_3, f_4]) = 0$, so by Step 10, $B = B - \{(2, 4)\} = \{(3, 4)\}.$

Question 6 Last, consider the pair (3,4). Show that Test 1 does not work but Test 2 works. Hence it comes $B = \emptyset$ and $\{f_1, f_2, f_3, f_4\}$ is a Gröbner basis of $\langle F \rangle$ for lex(x, y). Answer:

Exercise 6 We consider a sequence of polynomials $f_1, \ldots, f_s \subset \mathbb{k}[X_1, \ldots, X_n]$, and a monomial order \prec .

Let $f \in \mathbb{k}[X_1, \ldots, X_n]$, and $f = a_1 f_1 + \cdots + a_s f_s + r$ the division equality. Question 1 One property of the division, is: $a_i \neq 0 \Rightarrow \mathrm{LM}_{\prec}(a_i f_i) \preccurlyeq \mathrm{LM}_{\prec}(f)$ (Lect. III, Slide 18 Property (c)).

Let $\mathcal{I}(f) = \{i \mid LM_{\prec}(a_i f_i) = LM_{\prec}(f)\}$. Show that $\mathcal{I}(f) \neq \emptyset$. <u>Answer:</u>

Question 2 Then show that $LT_{\prec}(f) = \sum_{i \in \mathcal{I}(f)} LT(a_i f_i)$. Answer: