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Part I: Generalities

The polynomial algebra k| X]|

P € k[X] written as: P =) ,p; X", with p; € k.

The largest integer n such that p,, # 0 is called the degree of P.
Then, the leading coefficient of P is p,: LC(P) = py.

Let @ = > " ,¢; X" be a polynomial of degree m < n.

=0 t=m-+1 ] appears only if m<n

m—+n _
Multiplication: PQ = ) ( > kag> X!

1=0 k+40=1

< LC(PQ) = pngm = LC(P)Lc(Q) which is not zero (true over any field).



The ring k| X]

The following three points are easy to check:
1. PQ = QP (the multiplication is commutative)
2. (PQ)R = P(QR) (the multiplication is associative)

3. P(Q+ R) = PQ + PR (the multiplication is distributive with respect to
the addition)

= k[X] is a commutative ring.

Definition 1 A ring R is a set endowed with an addition + so that (R, +)
15 a commutative group, and a multiplication X, with a unit element 14,

which verifies points 2 and 3 above.

If X wverifies point 1 as well, then R is a commutative ring.



The degree

Proposition 1 For any polynomials P and @ in k| X]|, we have:

(i) deg(P + Q) < max{deg(P), deg(Q)}, with equality if deg(P) # deg(Q).
(true over any ring, not only fields k).

(ii) deg(PQ) = deg(P) + deg(Q) (not true over any ring, but true over any
integral domain — Definition 7)

PROOF:Exercise. O
Example: P = X? 4+ X and Q = —X? + 1, then deg(P + Q) < 2.
Consequence: Let L € N* and let k| X | = {P € k| X] | deg(P) < L}.

This a k-vector space of dimension L, with monomial basis
{1, X,X2%,...,Xt71} (Comment: there are many other bases of k[X]., !).



Lagrange bases of k[ X]|./

Nodes: Let ay,...,a; be L distinct points in k (assume L < |k|, if k is finite).
Idempotents: For 1 <i < L, let {;(X) := [, f:?{;

o fi(a,j) =0 lfj 7& ’i, and €z<az> = 1.
o deg(¢;)) =L —1

Lagrange mterpolatlon formula: For any P € k[ X]|. 1, we have

P(X) = S°E | P(a)6i(X). Tndeed, let Q(X) = P(X) = L, P(a))li(X):
Q(a;) = P(a;)—P(a1)li(a;)—P(az2)lz(a;)—- - -—Pla;)li(a;)— - —P(ar)lr(a;)
= P(a;)— 0 — 0 —P(a;)1 — = 0

= 0.

= @ is of degree L — 1 and has L roots, hence @) = 0 (Corollary 1, Lect. I).

Consequences: 1 =/01(X) + la(X) + -+ + L0 (X).

{01(X),..., 0 (X)} generates k[ X]<1 as a vector space, so it is a basis.
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The graded commutative algebra k| X]|

Consequence: ... The multiplication in k| X| induces an homomorphism of

vector spaces:

Mult k[X]<L1 X k[X]<L2 - k[X]<L1-|-L2
(A, B) — AB
We say that k[ X]| is a graded ring.

Also k[X] is a k-vector space (of infinite dimension...) = it is an algebra

over k.

= Finally, k[X] is a ring, a k-vector space, graded, commutative: it is a

graded commutative algebra over k.

Definition 2 An algebra A over a field k is a ring that is a k-vector space.
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Part II: The quotient ring k| X|/(P)

The remainder map

Let P € k|X]| be a non-constant polynomial of degree L > 1.
For any A € k[X], let A = BP + R be the Euclidean division of A by P.

The map ¢p is well-defined, because the remainder R is uniquely
determined by A and P.

op : k[ X] — klX|<p
A — R,

Easy to check: For any A, Ay € k[X] we have:
op(A1 + A2) = ¢p(A1) + ¢p(A2).
For any A € k: ¢p(AA1) = App(Ay).

= ¢p is a linear map between the k-vector spaces k| X| and k[ X]|- .
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Kernel of the remainder map

kergp = {A €k[X]| ¢p(4) =0}
={Ack[X]|P|A, “Pdivides A”}.

Hence ker ¢pp = (P) (the principal ideal generated by P).

Notation: For a € k| X] let a + (P) = {a+ QP | Q € k[X]|} C k[X].

(Comment: sometimes denoted a mod P, or even a(P)...)

Definition 3 An ideal I of a commutative ring A is a subset which verifies:
1. I is a subgroup of A for the addition.

2. foralla € A and b € I, we have ab € A
An ideal I is said to be principal if I = (b) (where (b) := {ab | a € A}).
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A quotient algebra

Let k[X]/(P) := {a + (P) | a € K[X]}.
Lemma 1 k[X]/(P) is a k-algebra (a k-vector space and a ring).
ProoF:Let (P) € k[X]/(P) be the zero element.

Addition: (a + (P))+(b+ (P)) := (a+b) + (P)

Multiplication: (a + (P)).(b+ (P)) := ab+ (P). (indeed:
(a+(P)).(b+ (P)) = ab+ (a+ b)(P) 4 (P?), but (a +b)(P) + (P?) C (P)).

Easy to check: with this addition and multiplication, k[X|/(P) is a ring (Cf.
Definition 1)

Finally, for A € k*, we have: A(a + (P)) = Aa + (P), because (AP) = (P).
This defines on k[X]/(P) a structure of vector space over k.

By Definition 2 this shows that k| X]/(P) is an algebra. O



An isomorphism

For two polynomials a,b € k[ X], if a — b € (P) = ker ¢p then:
¢p(a—0) =0= odp(a) = ¢r(b) = Vb ca+(P), ¢p(b) = dpr(a).
Then ¢p(a + (P)) := ¢p(a) is well-defined.

Kx] 24P kX)) 25 K[X]ep

a a+(P) = opr(a+(P))

By definition : ¢p = ¢p o modP .

= ker ¢p = (P) which is zero in k[X]/(P).

= ¢p is an isomorphism of vector spaces between k[X]/(P) and k[X]-r.

= dimy k[ X]/(P) = L.

Comment: k[X]|<z is not a subring of k[X], because there exists Pi, P> € k[ X<,
such that deg(P1P2) > L (so that P P> € k[ X]|<1). But we can transport the
multiplication of k[ X]/(P) to k| X]|<r by this linear isomorphism:

P1-Py := ¢p(P1P2). Then, ¢p is a ring homomorphism, and also an isomorphism.
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Abstraction to general rings

Let A be a commutative ring and I an ideal of A.
The quotient ring A/I is a ring defined in the following way:
Addition: (a+ 1)+ (b+1)=(a+0)+ 1.
Multiplication: (a +I)(b+ 1) =ab+ (a +b)I + I* C (ab) + 1.
Let B be another ring, and ¢ : A — B a ring homomorphism:
1. ¢(0) =0, ¢(14) = 15 and for all a1,as € A:
2. ¢(ar + az) = ¢(a1) + ¢(az) and @(a1az) = ¢(a1)¢(az),
First isomorphism theorem: As before, I := ker ¢ is an ideal of A, and
Va' € a+ I, ¢(a’) = ¢(a).
The map ¢(a + I) := ¢(a) is well-defined and verifies, ¢ = ¢ o mod:
mod I

A—— A/l 2, B, and ¢ is one-one
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Another very similar ring: Z (1/2)

Z and k[ X] are 2 rings with an Fuclidean division: they are Euclidean rings.

Let n e Nandlet ¢, : Z — {0,1,...,n— 1},
r +— r mod n (euclidean remainder of r by n).
As usual: Gn (2 + ) = n(én(®) + 6a(y)) = 7 +y mod n.
On(2Y) = On(Pn(2)Pn(y)) = vy mod n.
/N {0,...,n— 1} has no structure: no addition, multiplication...

We transport the addition and multiplication of Z to {0,...,n — 1} by the
map ¢, : ¢, becomes then a ring homomorphism that is onto.

Definition 4 A principal ideal domain (PID for short) is an integral

domain wn which each ideal s principal.

Proposition 2 Any Fuclidean ring is a PID (but some PID are not Euclidean).
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Another very similar ring: Z (2/2)

Kernel of the map ¢,,: ker ¢,, = {r € Z | n|r “r divides n” } = nZ.
This is an ideal of Z. The quotient ring is denoted Z/nZ.

An element of Z/nZ is denoted a +nZ (={a+mn |r € Z} C Z).
The addition and multiplication of Z/nZ are defined naturally.

If ' € a+ nZ, then ¢, (a’) = ¢,(a), so the map

bn : Z/nZ — {0,...,n—1},
a+nZ — én(a)

is well-defined.

The first isomorphism theorem is written in this case:

7, nedn, Z./nZ. LN {0,...,n—1}, with ¢,, = ¢, o modn, and ¢,, is one-one
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Part ITI: When k| X|/(P) is it a field ?
Bézout identity

Let a and b be two polynomials of k[X]; denote gcd(a,b) = g.
This means: (a,b) = (g), so there exists, u,v € k[X] such that

au +bv =g (Bézout identity)

Euclid's Lemma: Let p and x be 2 relatively prime (< gecd(p,x) =1)
polynomials in k| X|, and y another one. Assume that: plxy (p divides xy).
Then ply (p divides y ).

PRrROOF:The Bézout identity of p and x is here : up + vxr = 1 for 2
polynomials u, v € k[ X].

So upy + vry = y and since p|xy, there exists p’ such that pp’ = xy:
= upy + vpp’ =y = p(uy +vp') =y, so ply.
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Prime ideal and irreducible element

Definition 5 A polynomial P € k[X] is irreducible if it is non-constant
(<= deg(P) > 0), and if we have:

P = PP, then P, or P, € k (<= deg(Py) or deg(P) =0).

Comment: If P is an irreducible polynomial, then P has no root in k (indeed
if a € k is such a root, then X — « is a factor in k[.X] of P, contradiction).

The converse is false: X* — X2 + 2 has no root in k, but factorizes into
(X% +1)(X2-2).

Proposition 3 If P is an irreducible polynomial, then the ideal it generates
(P) in k[X], is a prime ideal.

Definition 6 An ideal I of a ring A is prime if for all x,y € A such that
xy e l, thenx el oryel.
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Field k[X]/(P)

PROOF:(of Proposition 3) Let x,y € k[X] such that zy € (P). This is
equivalent to p|xy. By Euclid’s Lemma, p|x or p|y; so x or y € (P). O

This implies: if P is irreducible, then k[X]/(P) is an integral domain. There
is actually a stronger result:

Proposition 4 If P is an irreducible polynomial, then k| X]/{P) is a field

PROOF:Given a + (P) # 0 in k[ X]/(P) ( <= a & (P)), what is its inverse ?
(1) If a € k*, then (a4 (P))(: + (P)) =1+ (P).

(2) If a € k, ( <= deg(a) > 0), then a and P are relatively prime (since P
is supposed irreducible), and the Bézout identity holds: au + Pv=1. It

comes: (a+ (P))(u+ (P)) =1+ (P). O

Definition 7 A ring A is an integral domain if xy =0= 2 =0 ory = 0.
Lemma 2 If I is a prime ideal, then A/I is an integral domain.
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Computing Bézout identity

Extended Euclidean Algorithm

# Inputs: f, g € k| X] with f £ 0 and deg(f) > deg(g)
# Outputs: £ € N, 74, sp,ts € k| X], with r, = gcd(f, g) and r, = fse + gte.

1: o «— f, 80— 1,150

2: 719,58 «—0,t; «— 1
3: 71— 1
4: while (r; # 0) do
5: (qi,Ti11) < EuclideanDivision(r;_1,7;) //so that: r;_1 = q;r; + 111
6:  Sit1 < Si—1 — ¢iSi
7r tig1 — o1 — qit;
8: 1+—1+1
end while
9: 0 «—1—1

10: return ¥, rp, s¢, ty.
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Termination

Does the algorithm terminate 7 Yes.

We must show that the while loop at Step 4 exits after a finite number of
iterations. For all + =1,2,... by Step 5, ;1 = q;r; + 711, with r;_1 #£ 0
and deg(r;_1) < deg(r;) or r;_1 = 0.

Starting with ro = f, and r1 = g, the sequence (deg(r;));>o is strictly
decreasing, and then there exists ¢ > 1 such that »; = 0. Then the while
loop does a finite number of iterations.

Actually, this shows that the number of iterations is at most
deg(r1) = deg(g).

Comment: If we replace k| X] by Z, and deg(.) by the absolute value | .|, the

algorithm and the prootf of termination are the same.
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Correctness

Is the algorithm correct ? Or is r, = fsy + gty the Bézout identity 7
For i =0,...,/, the equality r; = fs; + gt; (*); holds.
Proof by induction. By the initialization step, 7o = f and sof + tgg = f.
Then if we assume Equality (x), true for j = 0,...,7 then by Steps 5,6 and 7:
rivt = Ti—1—7iqi = (Si—1f +tic19) — (sif +tig)q
= (si—1 — @isi)f + (ti-1 — qiti)g = siv1f + tiva9,
which is (x);11.

Finally, if r; = 0, then we have r;_; = gcd(f, g) (this is the standard
Euclidean algorithm) and Step 9 denotes ry, = gcd(f,g). So ry = fsy + gty O

Comment: This proof is correct if we exchange k| X| by Z (or any Euclidean
ring).
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Example over Z

f =126 and g = 35.

Ll g | i | S |t ri = s;f +1ig Ti—1 = T + Tit1
0 126 | 1 0 126 = 1.126 + 0.35

113 35 0 1 35 =0.126 + 1.35 126 = 3.35 + 21
21 1] 21 1 | -3 21 =1.126 — 3.35 35 =121+14
31114 | -1 4 14 = —1.126 + 4.35 21 =114+ 7
41 2 7 2 | —7 7 =2.126 —7.35 14 =2.74+0

5 0 | =51 18 0= -5.126 + 18.35

We have r5 = 0 so £ = 4 and gcd(f,g) = r4 = 7 and the Bézout identity is:

7 =2.126 —7.35
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Example over k| X]|

f=18X3—-42X2 4+ 30X —6 and g = —12X2 + 10X — 2

) q; T 54 t;
0 18X3 — 42X2 + 30X — 6 1 0
1| —3X+9 —12X* + 10X — 2 0 1

8 4 9 3 3 9
2| -3X +1 20X -3 1 Sx -2
3 03X —35|4X?—-8X+14

X — 5. The Bézout identity:

N[©

Here r3 = 0so £ =2 and ged(f,g) =rp =13 =

3
2°
9 3 3 2 9 2
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Application of the EEA, 1

Linear Diophantine equations : What are the x,y € Z such that 6x — 8y =17
gcd(6,8) =2 = (8,6) = (2). But 1 € (2), so there is no solutions in Z x Z.

What about 6x — 8y =4 7 We can divide by the ged : 3z — 4y = 2

This time, gcd(3,4) =1, so 2 € (1) = Z and there are some solutions.

Compute the Bézout identity by the Extended Euclidean Algorithm (EEA):
3.(=1)+ (—4).(-1)=1 = 3.(=2)+(-4).(-2)=2.

= this gives one solution (z,y) = (-2, —2).

All solutions are (z,y) = (=2 + 4a,—2 + 3a),a € Z.
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Application of the EEA, 2

Chinese remaindering theorem : If n,m € Z are coprime (n,m) = (1)

There is an isomorphism between the two following rings:
Z/mnZ =~ Z/nZ X Z/mZ
Bézout identity:

amodmn +~— amodn, amodm
un +vm =1

(bun 4+ avm) mod mn <+ amodn , b mod m

Similarly, given 2 coprime polynomials A, B € k[.X] (A, B) = (1)

There is an isomorphism between the two following rings:
k[ X]/{AB) =~ Kk[X]/(A)xk[X]/(B) AR
Bézout identity:
Pmod AB — PmodA, PmodB
UP+VQ=1
(QUA+ PVB)mod AB «— PmodA, @ modB
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Part IV: Algebraic numbers
Back to the rationals: k = Q

Let o € C, and let Q|a] := {P(«a) | P € Q[X]}. This is a subring of C.

Consider ¢, : Q[ X| — Qla], P(X) — P(a) .

This a ring homomorphism, that is onto by definition of Q||

Let ker ¢, := {P € Q| X]|P(«) = 0} be its kernel.

Ist case, ker ¢, = {0} : then « is a transcendental number.

2nd case, ker ¢, # {0}, then « is an algebraic number.

By the first isomorphism theorem Q[X]/ker ¢, >~ Q|a] as rings.

Since Q[a] is an integral domain, then ker ¢, must be a prime ideal (Lemma 2).

Assume that « is algebraic. Since ker ¢, # {0}, there exists an unique
irreducible monic polynomial P such that (P) = ker ¢,,.

Definition 8 P is called the minimal polynomial of «.
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The field embedding problem

(P) generates the ideal of vanishing polynomial at a.
Q[X]/(P) is a field = the ring Q|| also, denoted often Q(«).
Let 8 be another root of P (o and 3 are conjugate).

Then Q|f] is a field isomorphic to Q[ X|/(P).

An embedding o : Q[X]|/(P) — C is an injective homomorphism, that
induces the identity on Q (o(x) = x for all x € Q).

For each root ag,...,a, of P, there is an embedding o; of Q[ X]|/(P) whose
image is Q(ay) C C.

Embedding problem: Among the fields Q(«;), i = 1,...,n, which fields
Q|X]/(P) is it representing ? ( <= which embedding o4, ..., o, choosing 7)

No answer, if necessary, numerical approximations of the roots of P can be

done then it is satisfactory.
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Computation in Q(a) (1/2)

Because {1, X,..., X" !} is a basis of the Q-vector space Q[X]/{P),
and because Q| X|/(P) — Qla], X — « is an isomorphism,

we deduce that {1,a,a?,...,a" 1} is a basis of Q(«).

To compute in Q(«) we compute in Q[ X|/(P)

Let 3, v € Q).

B =1+ Br.a+ Boa® + -+ Br_1a™ 1, with 3; € Q.

v =01 +v1.a+v0? + -+ 10"t with v; € Q.

Let Py(X) =17 6:; X' € QX] and P,(X)= "7 X" cQ[X].
We have Ps(a) = [ and Py(a) = 7.

Addition: 3+ v is equal to Ps(«a) + Py (), so P34 = Ps + P,.
Multiplication: 3.~ is equal to Ps(«) . Py(«), so Pz ~ = Ps. P, mod P.
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Computation in Q(«a) (2/2)

Division: Assume that 3 # 0. How to compute 371 ?
<= How to compute (P; mod P)~! in the field Q[X]/(P) ?

By Proposition 4, we compute the Bézout identity uPs + vP = 1 using the
EEA.

And (P; mod P)~! = umod P in Q[X]/(P).
So Py-1 =u= 7! =u(a) = Ps-1(a).

27



Effective primitive element theorem (1/2)

Let k be a finite extension of Q, and let n the degree [k : Q] of the extension.
Theorem 1 There exists exactly n distinct embeddings of k.
PROOF: (No proof, admitted. It is not the purpose of this class.)

Corollary 1 (Theorem of the primitive element) There exists a € C

such that k = Q(«). Such an « is called a primitive element of k over Q.

PROOF: (On the blackboard. .. )

Definition 9 A field L is an extension of a field K +f K C L. The field L is

then a K-vector space, and we say that LK is a field extension.

If the dimension of L over K is finite, then the extension L|K is said finite.
This dimension is called the degree of the extension L|K, denoted |L : K].
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Effective primitive element theorem (2/2)

How to compute a primitive element o 7
Answer: There are a lot of possibilities ! = choose one at random. ..

In practice, k is given by some algebraic elements aq, ..., a; so that
k=Q(aq,...,a;). We assume that

Today, we assume t = 2, so k = Q(a1, az), and we know the degree
k:Q]:=n

.t o n(n—1)
Proposition 5 Let 0 < e <1 be fired. Let M € N, verifying M > —7—.

Let ¢ € [—M; M| be an integer chosen at random.

Then oy + cag is not a primitive element for k (<= Q(ay + cag) C k) with
probability < €.

PROOF: (On the blackboard. .. ) O
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