MMA 数学特論 I

Algorithms for polynomial systems：

 elimination \＆Gröbner bases多項式系のアルゴリズム：グレブナー基底 \＆消去法

Lecture II：Univariate polynomials，（polynomials in one variable）

April，22th 2010．Part I：Generalities
Part II：The quotient ring $\mathrm{k}[X] /\langle P\rangle$ Part III：When $\mathrm{k}[X] /\langle P\rangle$ is it a field ？
May，6th 2010．Part IV：Algebraic numbers

Part I: Generalities

The polynomial algebra $\mathrm{k}[X]$

$P \in \mathrm{k}[X]$ written as: $P=\sum_{i=0}^{n} p_{i} X^{i}$, with $p_{i} \in \mathrm{k}$.
The largest integer n such that $p_{n} \neq 0$ is called the degree of P.
Then, the leading coefficient of P is $p_{n}: \operatorname{LC}(P)=p_{n}$.
Let $Q=\sum_{i=0}^{m} q_{i} X^{i}$ be a polynomial of degree $m \leq n$.
Addition: $P+Q=\sum_{i=0}^{m}\left(q_{i}+p_{i}\right) X^{i}+\left[\sum_{i=m+1}^{n} p_{i} X^{i}\right]_{\text {appears only if } m<n}$
Multiplication: $P Q=\sum_{i=0}^{m+n}\left(\sum_{k+\ell=i} p_{k} q_{\ell}\right) X^{i}$
$\Leftrightarrow \operatorname{LC}(P Q)=p_{n} q_{m}=\operatorname{LC}(P) \operatorname{LC}(Q)$ which is not zero (true over any field).

The ring $\mathrm{k}[X]$

The following three points are easy to check:

1. $P Q=Q P$ (the multiplication is commutative)
2. $(P Q) R=P(Q R)$ (the multiplication is associative)
3. $P(Q+R)=P Q+P R$ (the multiplication is distributive with respect to the addition)
$\Rightarrow \mathrm{k}[X]$ is a commutative ring.

Definition $1 A$ ring R is a set endowed with an addition + so that $(R,+)$ is a commutative group, and a multiplication \times, with a unit element 1_{A}, which verifies points 2 and 3 above.

If \times verifies point 1 as well, then R is a commutative ring.

The degree

Proposition 1 For any polynomials P and Q in $\mathrm{k}[X]$, we have:
(i) $\operatorname{deg}(P+Q) \leq \max \{\operatorname{deg}(P), \operatorname{deg}(Q)\}$, with equality if $\operatorname{deg}(P) \neq \operatorname{deg}(Q)$. (true over any ring, not only fields k).
(ii) $\operatorname{deg}(P Q)=\operatorname{deg}(P)+\operatorname{deg}(Q)$ (not true over any ring, but true over any integral domain \rightarrow Definition 7)

Proof:Exercise.
Example: $P=X^{2}+X$ and $Q=-X^{2}+1$, then $\operatorname{deg}(P+Q)<2$.
Consequence: Let $L \in \mathbb{N}^{\star}$ and let $\mathrm{k}[X]_{<L}=\{P \in \mathrm{k}[X] \mid \operatorname{deg}(P)<L\}$.
This a k-vector space of dimension L, with monomial basis
$\left\{1, X, X^{2}, \ldots, X^{L-1}\right\}$ (Comment: there are many other bases of $\mathrm{k}[X]_{<L}!$).

Lagrange bases of $\mathrm{k}[X]_{<L}$

Nodes: Let a_{1}, \ldots, a_{L} be L distinct points in k (assume $L<|\mathrm{k}|$, if k is finite). Idempotents: For $1 \leq i \leq L$, let $\ell_{i}(X):=\prod_{j \neq i} \frac{X-a_{j}}{a_{i}-a_{j}}$.

- $\ell_{i}\left(a_{j}\right)=0$ if $j \neq i$, and $\ell_{i}\left(a_{i}\right)=1$.
- $\operatorname{deg}\left(\ell_{i}\right)=L-1$

Lagrange interpolation formula: For any $P \in \mathrm{k}[X]_{<L}$, we have

$$
\begin{aligned}
& P(X)=\sum_{i=1}^{L} P\left(a_{i}\right) \ell_{i}(X) \text {. Indeed, let } Q(X)=P(X)-\sum_{i=1}^{L} P\left(a_{i}\right) \ell_{i}(X) \text { : } \\
& Q\left(a_{i}\right)=P\left(a_{i}\right)-P\left(a_{1}\right) \ell_{1}\left(a_{i}\right)-P\left(a_{2}\right) \ell_{2}\left(a_{i}\right)-\cdots-P\left(a_{i}\right) \ell_{i}\left(a_{i}\right)-\cdots-P\left(a_{L}\right) \ell_{L}\left(a_{i}\right) \\
& =P\left(a_{i}\right)-0 \quad-\quad 0 \quad-\cdots-P\left(a_{i}\right) 1 \quad-\cdots-0 \\
& =0 .
\end{aligned}
$$

$\Rightarrow Q$ is of degree $L-1$ and has L roots, hence $Q=0$ (Corollary 1, Lect. I).
Consequences: $1=\ell_{1}(X)+\ell_{2}(X)+\cdots+\ell_{L}(X)$.
$\left\{\ell_{1}(X), \ldots, \ell_{L}(X)\right\}$ generates $\mathrm{k}[X]_{<L}$ as a vector space, so it is a basis.

The graded commutative algebra $\mathrm{k}[X]$

Consequence: ... The multiplication in $\mathrm{k}[X]$ induces an homomorphism of vector spaces:

$$
\begin{aligned}
\text { Mult : } \mathrm{k}[X]_{<L_{1}} \times \mathrm{k}[X]_{<L_{2}} & \longrightarrow \mathrm{k}[X]_{<L_{1}+L_{2}} \\
(A, B) & \longmapsto A B
\end{aligned}
$$

We say that $\mathrm{k}[X]$ is a graded ring. Also $\mathrm{k}[X]$ is a k -vector space (of infinite dimension...) \Rightarrow it is an algebra over k.
\Rightarrow Finally, $\mathrm{k}[X]$ is a ring, a k -vector space, graded, commutative: it is a graded commutative algebra over k .

Definition $2 A n$ algebra A over a field k is a ring that is a k-vector space.

Part II: The quotient ring $\mathrm{k}[X] /\langle P\rangle$

The remainder map

Let $P \in \mathrm{k}[X]$ be a non-constant polynomial of degree $L \geq 1$.
For any $A \in \mathrm{k}[X]$, let $A=B P+R$ be the Euclidean division of A by P.
The map ϕ_{P} is well-defined, because the remainder R is uniquely determined by A and P.

$$
\begin{aligned}
\phi_{P}: \mathrm{k}[X] & \longrightarrow \mathrm{k}[X]_{<L} \\
A & \longmapsto R,
\end{aligned}
$$

Easy to check: For any $A_{1}, A_{2} \in \mathrm{k}[X]$ we have:
$\phi_{P}\left(A_{1}+A_{2}\right)=\phi_{P}\left(A_{1}\right)+\phi_{P}\left(A_{2}\right)$.
For any $\lambda \in \mathrm{k}: \phi_{P}\left(\lambda A_{1}\right)=\lambda \phi_{P}\left(A_{1}\right)$.
$\Rightarrow \phi_{P}$ is a linear map between the k -vector spaces $\mathrm{k}[X]$ and $\mathrm{k}[X]_{<L}$.

Kernel of the remainder map

$$
\begin{aligned}
\operatorname{ker} \phi_{P} & =\left\{A \in \mathrm{k}[X] \mid \phi_{P}(A)=0\right\} \\
& =\{A \in \mathrm{k}[X]|P| A, \quad " P \text { divides } A "\}
\end{aligned}
$$

Hence ker $\phi_{P}=\langle P\rangle$ (the principal ideal generated by P).
Notation: For $a \in \mathrm{k}[X]$ let $a+\langle P\rangle=\{a+Q P \mid Q \in \mathrm{k}[X]\} \subset \mathrm{k}[X]$. (Comment: sometimes denoted $a \bmod P$, or even $a\langle P\rangle \ldots$)

Definition 3 An ideal I of a commutative ring A is a subset which verifies:

1. I is a subgroup of A for the addition.
2. for all $a \in A$ and $b \in I$, we have $a b \in A$

An ideal I is said to be principal if $I=\langle b\rangle$ (where $\langle b\rangle:=\{a b \mid a \in A\}$).

A quotient algebra

Let $\mathrm{k}[X] /\langle P\rangle:=\{a+\langle P\rangle \mid a \in \mathrm{k}[X]\}$.
Lemma $1 \mathrm{k}[X] /\langle P\rangle$ is a k -algebra (a k -vector space and a ring).
Proof:Let $\langle P\rangle \in \mathrm{k}[X] /\langle P\rangle$ be the zero element.
Addition: $(a+\langle P\rangle)+(b+\langle P\rangle):=(a+b)+\langle P\rangle$
Multiplication: $(a+\langle P\rangle) \cdot(b+\langle P\rangle):=a b+\langle P\rangle$. (indeed:
$(a+\langle P\rangle) \cdot(b+\langle P\rangle)=a b+(a+b)\langle P\rangle+\left\langle P^{2}\right\rangle$, but $\left.(a+b)\langle P\rangle+\left\langle P^{2}\right\rangle \subset\langle P\rangle\right)$.
Easy to check: with this addition and multiplication, $\mathrm{k}[X] /\langle P\rangle$ is a ring (Cf. Definition 1)

Finally, for $\lambda \in \mathrm{k}^{\star}$, we have: $\lambda(a+\langle P\rangle)=\lambda a+\langle P\rangle$, because $\langle\lambda P\rangle=\langle P\rangle$.
This defines on $\mathrm{k}[X] /\langle P\rangle$ a structure of vector space over k .
By Definition 2 this shows that $\mathrm{k}[X] /\langle P\rangle$ is an algebra.

An isomorphism

For two polynomials $a, b \in \mathrm{k}[X]$, if $a-b \in\langle P\rangle=\operatorname{ker} \phi_{P}$ then:
$\phi_{P}(a-b)=0 \Rightarrow \phi_{P}(a)=\phi_{P}(b) \Rightarrow \forall b \in a+\langle P\rangle, \phi_{P}(b)=\phi_{P}(a)$.
Then $\bar{\phi}_{P}(a+\langle P\rangle):=\phi_{P}(a)$ is well-defined.

$$
\begin{array}{rcccl}
\mathrm{k}[X] & \xrightarrow{\bmod P} & \mathrm{k}[X] /\langle P\rangle & \xrightarrow{\bar{\phi}_{P}} & \mathrm{k}[X]_{<L} \\
a & \mapsto & a+\langle P\rangle & \mapsto & \bar{\phi}_{P}(a+\langle P\rangle) .
\end{array}
$$

By definition: $\phi_{P}=\bar{\phi}_{P} \circ \bmod P$.
$\Rightarrow \operatorname{ker} \bar{\phi}_{P}=\langle P\rangle$ which is zero in $\mathrm{k}[X] /\langle P\rangle$.
$\Rightarrow \bar{\phi}_{P}$ is an isomorphism of vector spaces between $\mathrm{k}[X] /\langle P\rangle$ and $\mathrm{k}[X]_{<L}$.
$\Rightarrow \operatorname{dim}_{\mathrm{k}} \mathrm{k}[X] /\langle P\rangle=L$.
Comment: $\mathrm{k}[X]_{<L}$ is not a subring of $\mathrm{k}[X]$, because there exists $P_{1}, P_{2} \in \mathrm{k}[X]_{<L}$, such that $\operatorname{deg}\left(P_{1} P_{2}\right) \geq L$ (so that $\left.P_{1} P_{2} \notin \mathrm{k}[X]_{<L}\right)$. But we can transport the multiplication of $\mathrm{k}[X] /\langle P\rangle$ to $\mathrm{k}[X]_{<L}$ by this linear isomorphism:
$P_{1} \cdot P_{2}:=\bar{\phi}_{P}\left(P_{1} P_{2}\right)$. Then, $\bar{\phi}_{P}$ is a ring homomorphism, and also an isomorphism.

Abstraction to general rings

Let A be a commutative ring and I an ideal of A.
The quotient ring A / I is a ring defined in the following way:
Addition: $(a+I)+(b+I)=(a+b)+I$.
Multiplication: $(a+I)(b+I)=a b+(a+b) I+I^{2} \subset(a b)+I$.
Let B be another ring, and $\phi: A \rightarrow B$ a ring homomorphism:

1. $\phi(0)=0, \phi\left(1_{A}\right)=1_{B}$ and for all $a_{1}, a_{2} \in A$:
2. $\phi\left(a_{1}+a_{2}\right)=\phi\left(a_{1}\right)+\phi\left(a_{2}\right)$ and $\phi\left(a_{1} a_{2}\right)=\phi\left(a_{1}\right) \phi\left(a_{2}\right)$,

First isomorphism theorem: As before, $I:=\operatorname{ker} \phi$ is an ideal of A, and $\forall a^{\prime} \in a+I, \phi\left(a^{\prime}\right)=\phi(a)$.
The map $\bar{\phi}(a+I):=\phi(a)$ is well-defined and verifies, $\phi=\bar{\phi} \circ \bmod I$:

$$
A \xrightarrow{\bmod I} A / I \xrightarrow{\bar{\phi}} B, \quad \text { and } \bar{\phi} \text { is one-one }
$$

Another very similar ring: $\mathbb{Z}(1 / 2)$

\mathbb{Z} and $\mathrm{k}[X]$ are 2 rings with an Euclidean division: they are Euclidean rings.
Let $n \in \mathbb{N}$ and let $\phi_{n}: \mathbb{Z} \rightarrow\{0,1, \ldots, n-1\}$,
$r \mapsto r \bmod n$ (euclidean remainder of r by n).
As usual: $\phi_{n}(x+y)=\phi_{n}\left(\phi_{n}(x)+\phi_{n}(y)\right)=x+y \bmod n$.
$\phi_{n}(x y)=\phi_{n}\left(\phi_{n}(x) \phi_{n}(y)\right)=x y \bmod n$.
$/!\backslash\{0, \ldots, n-1\}$ has no structure: no addition, multiplication...
We transport the addition and multiplication of \mathbb{Z} to $\{0, \ldots, n-1\}$ by the $\operatorname{map} \phi_{n}: \phi_{n}$ becomes then a ring homomorphism that is onto.

Definition 4 A principal ideal domain (PID for short) is an integral domain in which each ideal is principal.

Proposition 2 Any Euclidean ring is a PID (but some PID are not Euclidean).

Another very similar ring: $\mathbb{Z}(2 / 2)$

Kernel of the map ϕ_{n} : $\operatorname{ker} \phi_{n}=\{r \in \mathbb{Z}|n| r$ " r divides $n "\}=n \mathbb{Z}$.
This is an ideal of \mathbb{Z}. The quotient ring is denoted $\mathbb{Z} / n \mathbb{Z}$.
An element of $\mathbb{Z} / n \mathbb{Z}$ is denoted $a+n \mathbb{Z}(=\{a+r n \mid r \in \mathbb{Z}\} \subset \mathbb{Z})$.
The addition and multiplication of $\mathbb{Z} / n \mathbb{Z}$ are defined naturally.
If $a^{\prime} \in a+n \mathbb{Z}$, then $\phi_{n}\left(a^{\prime}\right)=\phi_{n}(a)$, so the map

$$
\begin{aligned}
\bar{\phi}_{n}: \mathbb{Z} / n \mathbb{Z} & \rightarrow\{0, \ldots, n-1\}, \\
a+n \mathbb{Z} & \mapsto \phi_{n}(a)
\end{aligned}
$$

is well-defined.
The first isomorphism theorem is written in this case:
$\mathbb{Z} \xrightarrow{\bmod n} \mathbb{Z} / n \mathbb{Z} \xrightarrow{\bar{\phi}_{n}}\{0, \ldots, n-1\}, \quad$ with $\phi_{n}=\bar{\phi}_{n} \circ \bmod n$, and $\bar{\phi}_{n}$ is one-one

Part III: When $\mathrm{k}[X] /\langle P\rangle$ is it a field ?

Bézout identity

Let a and b be two polynomials of $\mathrm{k}[X]$; denote $\operatorname{gcd}(a, b)=g$.
This means: $\langle a, b\rangle=\langle g\rangle$, so there exists, $u, v \in \mathrm{k}[X]$ such that

$$
a u+b v=g \quad \text { (Bézout identity) }
$$

Euclid's Lemma: Let p and x be 2 relatively prime $(\Longleftrightarrow \operatorname{gcd}(p, x)=1$) polynomials in $\mathrm{k}[X]$, and y another one. Assume that: $p \mid x y$ (p divides $x y$). Then $p \mid y$ (p divides y).

Proof:The Bézout identity of p and x is here : $u p+v x=1$ for 2 polynomials $u, v \in \mathrm{k}[X]$.

So $u p y+v x y=y$ and since $p \mid x y$, there exists p^{\prime} such that $p p^{\prime}=x y$:
$\Rightarrow u p y+v p p^{\prime}=y \Rightarrow p\left(u y+v p^{\prime}\right)=y$, so $p \mid y$.

Prime ideal and irreducible element

Definition 5 A polynomial $P \in \mathrm{k}[X]$ is irreducible if it is non-constant ($\Longleftrightarrow \operatorname{deg}(P)>0)$, and if we have:

$$
P=P_{1} P_{2}, \text { then } P_{1} \text { or } P_{2} \in \mathrm{k}\left(\Longleftrightarrow \operatorname{deg}\left(P_{1}\right) \text { or } \operatorname{deg}\left(P_{2}\right)=0\right)
$$

Comment: If P is an irreducible polynomial, then P has no root in k (indeed if $\alpha \in \mathrm{k}$ is such a root, then $X-\alpha$ is a factor in $\mathrm{k}[X]$ of P, contradiction). The converse is false: $X^{4}-X^{2}+2$ has no root in k , but factorizes into $\left(X^{2}+1\right)\left(X^{2}-2\right)$.

Proposition 3 If P is an irreducible polynomial, then the ideal it generates $\langle P\rangle$ in $\mathrm{k}[X]$, is a prime ideal.

Definition 6 An ideal I of a ring A is prime if for all $x, y \in A$ such that $x y \in I$, then $x \in I$ or $y \in I$.

Field $\mathrm{k}[X] /\langle P\rangle$

Proof:(of Proposition 3) Let $x, y \in \mathrm{k}[X]$ such that $x y \in\langle P\rangle$. This is equivalent to $p \mid x y$. By Euclid's Lemma, $p \mid x$ or $p \mid y$; so x or $y \in\langle P\rangle$.
This implies: if P is irreducible, then $\mathrm{k}[X] /\langle P\rangle$ is an integral domain. There is actually a stronger result:

Proposition 4 If P is an irreducible polynomial, then $\mathrm{k}[X] /\langle P\rangle$ is a field Proof:Given $a+\langle P\rangle \neq 0$ in $\mathrm{k}[X] /\langle P\rangle(\Longleftrightarrow a \notin\langle P\rangle)$, what is its inverse ?
(1) If $a \in \mathrm{k}^{\star}$, then $(a+\langle P\rangle)\left(\frac{1}{a}+\langle P\rangle\right)=1+\langle P\rangle$.
(2) If $a \notin \mathrm{k},(\Longleftrightarrow \operatorname{deg}(a)>0)$, then a and P are relatively prime (since P is supposed irreducible), and the Bézout identity holds: $a u+P v=1$. It comes: $(a+\langle P\rangle)(u+\langle P\rangle)=1+\langle P\rangle$.

Definition $7 A$ ring A is an integral domain if $x y=0 \Rightarrow x=0$ or $y=0$.
Lemma 2 If I is a prime ideal, then A / I is an integral domain.

Computing Bézout identity

Extended Euclidean Algorithm
\# Inputs: $f, g \in \mathrm{k}[X]$ with $f \neq 0$ and $\operatorname{deg}(f) \geq \operatorname{deg}(g)$
\# Outputs: $\ell \in \mathbb{N}, r_{\ell}, s_{\ell}, t_{\ell} \in \mathrm{k}[X]$, with $r_{\ell}=\operatorname{gcd}(f, g)$ and $r_{\ell}=f s_{\ell}+g t_{\ell}$.
1: $r_{0} \leftarrow f, s_{0} \leftarrow 1, t_{0} \leftarrow 0$
2: $r_{1} \leftarrow g, s_{1} \leftarrow 0, t_{1} \leftarrow 1$
3: $i \leftarrow 1$
4: while $\left(r_{i} \neq 0\right)$ do
5: $\quad\left(q_{i}, r_{i+1}\right) \leftarrow$ EuclideanDivision $\left(r_{i-1}, r_{i}\right) / /$ so that: $r_{i-1}=q_{i} r_{i}+r_{i+1}$
6: $\quad s_{i+1} \leftarrow s_{i-1}-q_{i} s_{i}$
7: $\quad t_{i+1} \leftarrow t_{i-1}-q_{i} t_{i}$
8: $\quad i \leftarrow i+1$
end while
9: $\ell \leftarrow i-1$
10: return $\ell, r_{\ell}, s_{\ell}, t_{\ell}$.

Termination

Does the algorithm terminate? Yes.
We must show that the while loop at Step 4 exits after a finite number of iterations. For all $i=1,2, \ldots$ by Step $5, r_{i-1}=q_{i} r_{i}+r_{i+1}$, with $r_{i-1} \neq 0$ and $\operatorname{deg}\left(r_{i-1}\right)<\operatorname{deg}\left(r_{i}\right)$ or $r_{i-1}=0$.

Starting with $r_{0}=f$, and $r_{1}=g$, the sequence $\left(\operatorname{deg}\left(r_{i}\right)\right)_{i \geq 0}$ is strictly decreasing, and then there exists $i \geq 1$ such that $r_{i}=0$. Then the while loop does a finite number of iterations.

Actually, this shows that the number of iterations is at most $\operatorname{deg}\left(r_{1}\right)=\operatorname{deg}(g)$.

Comment: If we replace $\mathrm{k}[X]$ by \mathbb{Z}, and $\operatorname{deg}($.$) by the absolute value |$.$| , the$ algorithm and the proof of termination are the same.

Correctness

Is the algorithm correct ? Or is $r_{\ell}=f s_{\ell}+g t_{\ell}$ the Bézout identity ?
For $i=0, \ldots, \ell$, the equality $r_{i}=f s_{i}+g t_{i}(*)_{i}$ holds.
Proof by induction. By the initialization step, $r_{0}=f$ and $s_{0} f+t_{0} g=f$.
Then if we assume Equality $(*)_{j}$ true for $j=0, \ldots, i$ then by Steps 5,6 and 7:

$$
\begin{aligned}
r_{i+1} & =r_{i-1}-r_{i} q_{i}=\left(s_{i-1} f+t_{i-1} g\right)-\left(s_{i} f+t_{i} g\right) q_{i} \\
& =\left(s_{i-1}-q_{i} s_{i}\right) f+\left(t_{i-1}-q_{i} t_{i}\right) g=s_{i+1} f+t_{i+1} g
\end{aligned}
$$

which is $(*)_{i+1}$.
Finally, if $r_{i}=0$, then we have $r_{i-1}=\operatorname{gcd}(f, g)$ (this is the standard Euclidean algorithm) and Step 9 denotes $r_{\ell}=\operatorname{gcd}(f, g)$. So $r_{\ell}=f s_{\ell}+g t_{\ell} \square$

Comment: This proof is correct if we exchange $\mathrm{k}[X]$ by \mathbb{Z} (or any Euclidean ring).

Example over \mathbb{Z}

$f=126$ and $g=35$.

i	q_{i}	r_{i}	s_{i}	t_{i}	$r_{i}=s_{i} f+t_{i} g$	$r_{i-1}=q_{i} r_{i}+r_{i+1}$
0		126	1	0	$126=1.126+0.35$	
1	3	35	0	1	$35=0.126+1.35$	$126=3.35+21$
2	1	21	1	-3	$21=1.126-3.35$	$35=1.21+14$
3	1	14	-1	4	$14=-1.126+4.35$	$21=1.14+7$
4	2	7	2	-7	$7=2.126-7.35$	$14=2.7+0$
5		0	-5	18	$0=-5.126+18.35$	

We have $r_{5}=0$ so $\ell=4$ and $\operatorname{gcd}(f, g)=r_{4}=7$ and the Bézout identity is:

$$
7=2.126-7.35
$$

Example over $\mathrm{k}[X]$

$f=18 X^{3}-42 X^{2}+30 X-6$ and $g=-12 X^{2}+10 X-2$

i	q_{i}	r_{i}	s_{i}	t_{i}
0		$18 X^{3}-42 X^{2}+30 X-6$	1	0
1	$-\frac{3}{2} X+\frac{9}{4}$	$-12 X^{2}+10 X-2$	0	1
2	$-\frac{8}{3} X+\frac{4}{3}$	$\frac{9}{2} X-\frac{3}{2}$	1	$\frac{3}{2} X-\frac{9}{4}$
3		0	$\frac{8}{3} X-\frac{4}{3}$	$4 X^{2}-8 X+4$

Here $r_{3}=0$ so $\ell=2$ and $\operatorname{gcd}(f, g)=r_{\ell}=r_{2}=\frac{9}{2} X-\frac{3}{2}$. The Bézout identity:

$$
\frac{9}{2} X-\frac{3}{2}=1 .\left(18 X^{3}-42 X^{2}+30 X-6\right)+\left(\frac{3}{2} X-\frac{9}{4}\right)\left(-12 X^{2}+10 X-2\right)
$$

Application of the EEA, 1

Linear Diophantine equations: What are the $x, y \in \mathbb{Z}$ such that $6 x-8 y=1$? $\operatorname{gcd}(6,8)=2 \Rightarrow\langle 8,6\rangle=\langle 2\rangle$. But $1 \notin\langle 2\rangle$, so there is no solutions in $\mathbb{Z} \times \mathbb{Z}$.

What about $6 x-8 y=4$? We can divide by the gcd: $3 x-4 y=2$
This time, $\operatorname{gcd}(3,4)=1$, so $2 \in\langle 1\rangle=\mathbb{Z}$ and there are some solutions.
Compute the Bézout identity by the Extended Euclidean Algorithm (EEA):

$$
3 \cdot(-1)+(-4) \cdot(-1)=1 \quad \Rightarrow \quad 3 \cdot(-2)+(-4) \cdot(-2)=2 .
$$

\Rightarrow this gives one solution $(x, y)=(-2,-2)$.
All solutions are $(x, y)=(-2+4 a,-2+3 a), a \in \mathbb{Z}$.

Application of the EEA, 2

Chinese remaindering theorem : If $n, m \in \mathbb{Z}$ are coprime

$$
\langle n, m\rangle=\langle 1\rangle
$$

There is an isomorphism between the two following rings:

$$
\begin{aligned}
\mathbb{Z} / m n \mathbb{Z} & \simeq \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z} \\
a \bmod m n & \mapsto a \bmod n, a \bmod m \\
(b u n+a v m) \bmod m n & \leftarrow a \bmod n, b \bmod m
\end{aligned}
$$

Bézout identity:

$$
u n+v m=1
$$

Similarly, given 2 coprime polynomials $A, B \in \mathrm{k}[X]$ $\langle A, B\rangle=\langle 1\rangle$

There is an isomorphism between the two following rings:

$$
\begin{aligned}
\mathrm{k}[X] /\langle A B\rangle & \simeq \mathrm{k}[X] /\langle A\rangle \times \mathrm{k}[X] /\langle B\rangle \\
P \bmod A B & \mapsto P \bmod A, P \bmod B \\
(Q U A+P V B) \bmod A B & \leftarrow P \bmod A, Q \bmod B
\end{aligned}
$$

Bézout identity:
$U P+V Q=1$

Part IV: Algebraic numbers

Back to the rationals: $\mathrm{k}=\mathbb{Q}$
Let $\alpha \in \mathbb{C}$, and let $\mathbb{Q}[\alpha]:=\{P(\alpha) \mid P \in \mathbb{Q}[X]\}$. This is a subring of \mathbb{C}.
Consider $\phi_{\alpha}: \mathbb{Q}[X] \rightarrow \mathbb{Q}[\alpha], P(X) \mapsto P(\alpha)$.
This a ring homomorphism, that is onto by definition of $\mathbb{Q}[\alpha]$
Let $\operatorname{ker} \phi_{\alpha}:=\{P \in \mathbb{Q}[X] \mid P(\alpha)=0\}$ be its kernel.
1st case, $\operatorname{ker} \phi_{\alpha}=\{0\}$: then α is a transcendental number.
2nd case, ker $\phi_{\alpha} \neq\{0\}$, then α is an algebraic number.
By the first isomorphism theorem $\mathbb{Q}[X] / \operatorname{ker} \phi_{\alpha} \simeq \mathbb{Q}[\alpha]$ as rings.
Since $\mathbb{Q}[\alpha]$ is an integral domain, then $\operatorname{ker} \phi_{\alpha}$ must be a prime ideal (Lemma 2).
Assume that α is algebraic. Since $\operatorname{ker} \phi_{\alpha} \neq\{0\}$, there exists an unique irreducible monic polynomial P such that $\langle P\rangle=\operatorname{ker} \phi_{\alpha}$.

Definition $8 P$ is called the minimal polynomial of α.

The field embedding problem

$\langle P\rangle$ generates the ideal of vanishing polynomial at α.
$\mathbb{Q}[X] /\langle P\rangle$ is a field \Rightarrow the ring $\mathbb{Q}[\alpha]$ also, denoted often $\mathbb{Q}(\alpha)$.
Let β be another root of P (α and β are conjugate).
Then $\mathbb{Q}[\beta]$ is a field isomorphic to $\mathbb{Q}[X] /\langle P\rangle$.
An embedding $\sigma: \mathbb{Q}[X] /\langle P\rangle \hookrightarrow \mathbb{C}$ is an injective homomorphism, that induces the identity on $\mathbb{Q}(\sigma(x)=x$ for all $x \in \mathbb{Q})$.

For each root $\alpha_{1}, \ldots, \alpha_{n}$ of P, there is an embedding σ_{i} of $\mathbb{Q}[X] /\langle P\rangle$ whose image is $\mathbb{Q}\left(\alpha_{i}\right) \subset \mathbb{C}$.
Embedding problem: Among the fields $\mathbb{Q}\left(\alpha_{i}\right), i=1, \ldots, n$, which fields $\mathbb{Q}[X] /\langle P\rangle$ is it representing ? $\left(\Longleftrightarrow\right.$ which embedding $\sigma_{1}, \ldots, \sigma_{n}$ choosing ?)

No answer, if necessary, numerical approximations of the roots of P can be done then it is satisfactory.

Computation in $\mathbb{Q}(\alpha)(1 / 2)$

Because $\left\{1, X, \ldots, X^{n-1}\right\}$ is a basis of the \mathbb{Q}-vector space $\mathbb{Q}[X] /\langle P\rangle$, and because $\mathbb{Q}[X] /\langle P\rangle \rightarrow \mathbb{Q}[\alpha], X \mapsto \alpha$ is an isomorphism, we deduce that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$ is a basis of $\mathbb{Q}(\alpha)$.

To compute in $\mathbb{Q}(\alpha)$ we compute in $\mathbb{Q}[X] /\langle P\rangle$
Let $\beta, \gamma \in \mathbb{Q}(\alpha)$.
$\beta=\beta_{0} .1+\beta_{1} . \alpha+\beta_{2} \alpha^{2}+\cdots+\beta_{n-1} \alpha^{n-1}$, with $\beta_{i} \in \mathbb{Q}$.
$\gamma=\gamma_{0} .1+\gamma_{1} . \alpha+\gamma_{2} \alpha^{2}+\cdots+\gamma_{n-1} \alpha^{n-1}$, with $\gamma_{i} \in \mathbb{Q}$.
Let $P_{\beta}(X)=\sum_{i=0}^{n-1} \beta_{i} X^{i} \in \mathbb{Q}[X]$ and $P_{\gamma}(X)=\sum_{i=0}^{n-1} \gamma_{i} X^{i} \in \mathbb{Q}[X]$.
We have $P_{\beta}(\alpha)=\beta$ and $P_{\gamma}(\alpha)=\gamma$.
Addition: $\beta+\gamma$ is equal to $P_{\beta}(\alpha)+P_{\gamma}(\alpha)$, so $P_{\beta+\gamma}=P_{\beta}+P_{\gamma}$.
Multiplication: $\beta \cdot \gamma$ is equal to $P_{\beta}(\alpha) . P_{\gamma}(\alpha)$, so $P_{\beta . \gamma}=P_{\beta} . P_{\gamma} \bmod P$.

Computation in $\mathbb{Q}(\alpha)(2 / 2)$

Division: Assume that $\beta \neq 0$. How to compute β^{-1} ?
\Longleftrightarrow How to compute $\left(P_{\beta} \bmod P\right)^{-1}$ in the field $\mathbb{Q}[X] /\langle P\rangle$?
By Proposition 4, we compute the Bézout identity $u P_{\beta}+v P=1$ using the EEA.

And $\left(P_{\beta} \bmod P\right)^{-1}=u \bmod P$ in $\mathbb{Q}[X] /\langle P\rangle$.
So $P_{\beta^{-1}}=u \Rightarrow \beta^{-1}=u(\alpha)=P_{\beta^{-1}}(\alpha)$.

Effective primitive element theorem (1/2)

Let k be a finite extension of \mathbb{Q}, and let n the degree $[\mathrm{k}: \mathbb{Q}]$ of the extension.
Theorem 1 There exists exactly n distinct embeddings of k .
Proof:(No proof, admitted. It is not the purpose of this class.)
Corollary 1 (Theorem of the primitive element) There exists $\alpha \in \mathbb{C}$ such that $\mathrm{k}=\mathbb{Q}(\alpha)$. Such an α is called a primitive element of k over \mathbb{Q}.

Proof:(On the blackboard...)

Definition 9 A field L is an extension of a field K if $\mathrm{K} \subset \mathrm{L}$. The field L is then a K -vector space, and we say that $\mathrm{L} \mid \mathrm{K}$ is a field extension.

If the dimension of L over K is finite, then the extension $\mathrm{L} \mid \mathrm{K}$ is said finite. This dimension is called the degree of the extension $\mathrm{L} \mid \mathrm{K}$, denoted $[\mathrm{L}: \mathrm{K}]$.

Effective primitive element theorem (2/2)

How to compute a primitive element α ?
Answer: There are a lot of possibilities ! \Rightarrow choose one at random...
In practice, k is given by some algebraic elements $\alpha_{1}, \ldots, \alpha_{t}$ so that $\mathrm{k}=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{t}\right)$. We assume that

Today, we assume $t=2$, so $\mathrm{k}=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$, and we know the degree $[\mathrm{k}: \mathbb{Q}]:=n$

Proposition 5 Let $0<\epsilon<1$ be fixed. Let $M \in \mathbb{N}$, verifying $M \geq \frac{n(n-1)}{4 \epsilon}$.
Let $c \in[-M ; M]$ be an integer chosen at random.
Then $\alpha_{1}+c \alpha_{2}$ is not a primitive element for $\mathrm{k}\left(\Longleftrightarrow \mathbb{Q}\left(\alpha_{1}+c \alpha_{2}\right) \subsetneq \mathrm{k}\right)$ with probability $\leq \epsilon$.

Proof:(On the blackboard...)

