MMA 数学特論 I

Algorithms for polynomial systems：

 elimination \＆Gröbner bases多項式系のアルゴリズム：グレブナー基底 \＆消去法

Lecture III：The division algorithm

May，6th 2010．Part I：Generalities on multivariate polynomials
Part II：Monomial orders
Part III：The algorithm

Part I: Generalities

The polynomial ring $R\left[X_{1}, \ldots, X_{n}\right](1 / 3)$
Notation: A multi-integer α is an element of \mathbb{N}^{n}, for a given n : hence, $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, with $\alpha_{i} \in \mathbb{N}$.

Addition: Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ two multi-integers, we denote by $\alpha+\beta$ the multi-integer $\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{n}+\beta_{n}\right)$.

For $n>1, P \in R\left[X_{1}, \ldots, X_{n}\right]$ is a multivariate or n-variate polynomial, or a polynomial in n variables, with coefficients in (a commutative) ring R.

We write: $P=\sum_{\alpha \in \mathbb{N}^{n}} p_{\alpha} X^{\alpha}$, where $X^{\alpha}=X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}$, and $p_{\alpha} \neq 0$ only for a finite number of multi-integers α.

Monomial: It is a polynomial P with all $p_{\alpha}=0$ except for a multi-integer β, for which $p_{\beta}=1$. This means $P=X_{1}^{\beta_{1}} \cdots X_{n}^{\beta_{n}}$.

The polynomial ring $R\left[X_{1}, \ldots, X_{n}\right](2 / 3)$

Coefficient: the ring R is called the coefficient ring of $R\left[X_{1}, \ldots, X_{n}\right]$.
For a polynomial $P=\sum_{\alpha} p_{\alpha} X^{\alpha}$, the elements $\left(p_{\alpha}\right)$ are the coefficients of P.
Given a multi-integer α, the coefficient p_{α} is the coefficient of (the monomial) X^{α} of P.

If $p_{\alpha} \neq 0$, we say that the monomial X^{α} occurs in P.
The coefficient $p_{(0, \ldots, 0)}$ is called the constant term of P.
Multiplication: $P Q=\sum_{\alpha \in \mathbb{N}^{n}}\left(\sum_{\substack{\beta, \gamma \in \mathbb{N}^{n} \\ \beta+\gamma=\alpha}} p_{\beta} q_{\gamma}\right) X^{\alpha} \quad$ (notice that $P Q=Q P$).
Ring structure: With the addition and multiplication above, $R\left[X_{1}, \ldots, X_{n}\right]$ is a commutative ring.

The polynomial ring $R\left[X_{1}, \ldots, X_{n}\right](3 / 3)$

Proposition 1 If R is an integral domain, then $R\left[X_{1}, \ldots X_{n}\right]$ is also integral.

Proof:By induction on n. When $n=1$, it is proven in Lect. II. If this is true for polynomials in $n-1$ variables over R, then let $R^{\prime}=R\left[X_{1}, \ldots, X_{n-1}\right]$ in integral.

The case in 1 variable done in Lect. II shows that $R^{\prime}\left[X_{n}\right]$ is integral. But $R^{\prime}\left[X_{n}\right]=R\left[X_{1}, \ldots, X_{n}\right]$.

Remark 1: Assume $R=\mathbb{k}$ is a field. Then $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ is a \mathbb{k}-vector space. As a ring, it is also a \mathbb{k}-algebra.

The degree

Given a multi-integer $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, the sum of α is $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$

The degree of a monomial X^{α} is $|\alpha|$.
The degree of a polynomial $P \in R\left[X_{1}, \ldots, X_{n}\right]$ is the maximal degree of one of the monomials occuring in P.

For any polynomials P and Q in $R\left[X_{1}, \ldots, X_{n}\right]$, we have:
(i) $\operatorname{deg}(P+Q) \leq \max \{\operatorname{deg}(P), \operatorname{deg}(Q)\}$, with equality if $\operatorname{deg}(P) \neq \operatorname{deg}(Q)$.
(ii) $\operatorname{deg}(P Q)=\operatorname{deg}(P)+\operatorname{deg}(Q)$ (not true over any ring, but true over any integral domain)

Remark: Assume $R=\mathbb{k}$ is a field, and let $L \in \mathbb{N}^{*}$. Let $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]_{<L}$ be the set of polynomials of degree $<L$.

This is a sub-vector space of finite dimension (Exercise: what is the dimension ?)

The degree

By the 2 previous sildes, the following map is \mathbb{k}-bilinear:

$$
\begin{aligned}
\text { Mult : } \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]_{<L_{1}} \times \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]_{<L_{2}} & \longrightarrow \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]_{<L_{1}+L_{2}} \\
(A, B) & \longmapsto A B
\end{aligned}
$$

It follows that $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ is a graded commutative algebra.
Remark 1: There are several monomials of same degree.
Remark 2: There is no Euclidean division !
Comment: The degree is sometimes called the total degree of a polynomial P.
The partial degree in X_{i} of P, denoted $\operatorname{deg}_{X_{i}}(P)$ is the maximal exponent α_{i} of X_{i} among all the monomials occuring in P.

The partial degree is the degree of the univariate polynomial P seen in $R_{i}\left[X_{i}\right]$, whith $R_{i}=\mathbb{k}\left[X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right]$.

Polynomial function

Here we assume $R=\mathbb{k}$ is a field. Let $P \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ be a polynomial. Function: The map $\mathbb{k}^{n} \rightarrow \mathbb{k},\left(x_{1}, \ldots, x_{n}\right) \mapsto P\left(x_{1}, \ldots, x_{n}\right)$ is the function defined by P.

A zero of P is a point $\left(x_{1}, \ldots, x_{n}\right)$ such that $P\left(x_{1}, \ldots, x_{n}\right)=0$.
!!: There are some non-zero polynomials P, that defined the zero function.
Example, even with $n=1$: the non-zero polynomial $X^{p}-X \in \mathbb{F}_{p}[X]$ define the null function of $\mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$.

Lemma 1 Assume that \mathbb{k} is infinite, and that there are some infinite subsets S_{1}, \ldots, S_{n} of \mathbb{k} such that:

$$
\forall a_{i} \in S_{i}, \quad f\left(a_{1}, \ldots, a_{n}\right)=0
$$

Then $f=0$ (the null polynomial).
Proof:When $n=1$ it is (Lect. I, Corollary 1). Then by induction on n.

Ideals of $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$

Definition of an ideal \rightarrow Lect. II, Definiton 3.
Example: Finitely generated ideals. The subset $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ of $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ defined by:

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle:=\left\{\sum_{i=1}^{s} f_{i} g_{i}, \quad g_{i} \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]\right\},
$$

is an ideal of $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$. Its basis f_{1}, \ldots, f_{s} is finite (it s a finitely generated ideal)

All the ideals of $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ are finitely generated! (Hilbert. Proof, next class).

A geometric interpretation

Suppose \mathbb{k} is infintite (polynomials \Longleftrightarrow polynomial functions).
Let $F:=\left\{f_{1}\left(X_{1}, \ldots, X_{n}\right), f_{2}\left(X_{1}, \ldots, X_{n}\right), \ldots, f_{s}\left(X_{1}, \ldots, X_{n}\right)\right\}$ a polynomial system.

A solution of F is a common zero of all the polynomials f_{i} (be careful: depends on the field extension).

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a solution of F (in a field extension of \mathbb{k}).
Then for any polynomial $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle, x$ is also a solution of f.
Consequence: Looking for solutions of a polynomial system F is the same as looking for solution of the ideal $\langle F\rangle$ generated by F.

Comment: It is actually a bit more complicated (problem of multiplicities especially \rightarrow Hilbert's Nullstellensatz).

Parts II \& III: Division for multivariate polynomials Introduction

Aim: Given $f, f_{1}, \ldots, f_{s} \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, write:

$$
\begin{equation*}
f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r, \tag{1}
\end{equation*}
$$

with r have "smaller" monomials than those of f_{1}, \ldots, f_{s}.
\rightarrow monomial orders
Unicity of the remainder r in Equation (1)?
\rightarrow No in general.
\rightarrow Yes if the polynomials $\left(f_{i}\right)_{i}$ are ordered.
Ideal Membership: if $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$, so we have $r=0$?
\rightarrow No in general.
\rightarrow Yes if the polynomials $\left(f_{i}\right)_{i}$ form a Gröbner basis.

Part II: Monomial orders

Definition $1 A$ monomial order (or ordering) \prec on $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, is a relation on the set of monomials $X^{\alpha}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, such that:
(i) \prec is a total order (2 monomials can always be compared: if $\alpha \neq \beta$, then either $X^{\alpha} \prec X^{\beta}$, or $X^{\beta} \prec X^{\alpha}$).
(ii) if $X^{\alpha} \prec X^{\beta}$, then $X^{\alpha} X^{\gamma} \prec X^{\beta} X^{\gamma}$, for all $\gamma \in \mathbb{N}^{n}$.
(iii) \prec is a well-order: any non-empty subset of monomials has a smallest element.

Before giving examples, an useful lemma.
Lemma 2 An order relation \prec on the monomials of $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ is a well-order iff every strictly decreasing sequence

$$
X^{\alpha(1)} \succ X^{\alpha(2)} \succ X^{\alpha(3)} \succ \cdots
$$

eventually terminates $(\Longleftrightarrow \exists \ell \mid \alpha(N)=\alpha(\ell) \forall N \geq \ell)$.

Example I: lexicographic orders

Let us order the n variables: $X_{n} \prec X_{n-1} \prec \cdots \prec X_{1}$ (there are n ! such possible orders: $X_{n-1} \prec X_{n} \prec \cdots \prec X_{2} \prec X_{1}$ is another one, corresponding to the permutation $(n-1, n)$, while $X_{n} \prec X_{n-1} \prec \cdots \prec X_{1} \prec X_{2}$ corresponds to the permutation $(1,2))$.

Definition 2 The lexicographic order $\prec_{\text {lex }}$ on the monomials of $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ relatively to \prec is characterized by: For all multi-integers $\alpha \neq \beta$,

$$
X^{\alpha} \prec_{\text {lex }} X^{\beta} \Leftrightarrow \text { if } \ell:=\min \left\{1 \leq i \leq n \mid \alpha_{i} \neq \beta_{i}\right\} \text {, then } \alpha_{\ell}<\beta_{\ell} \text {. }
$$

Example: $X_{1}^{2} X_{2}^{3} \prec_{\text {lex }} X_{1}^{2} X_{2}^{4}$, since $(2,3)-(2,4)=(0,-1)$ and $-1<0$
Proposition 2 The lex order is a monomial order.
Proof:(i) and (ii) of Definition 1 are clearly verified, (iii) is proved using Lemma 2.

Example II: graded lex orders

The next two orders are called degree orders, or they are said to refine the degree. Recall that for a multi-integer $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, we have $|\alpha|=\sum_{i=1}^{n} \alpha_{i}=\operatorname{deg}\left(X^{\alpha}\right)$.

Definition 3 Given two distinct multi-integers $\alpha=\left(\alpha_{i}\right)_{1 \leq i \leq n}$ and $\beta=\left(\beta_{i}\right)_{1 \leq i \leq n} \in \mathbb{N}^{n}$, the graded lex order is characterized by

$$
X^{\alpha} \prec_{\text {grlex }} X^{\beta} \Leftrightarrow|\alpha|<|\beta|, \text { or }|\alpha|=|\beta| \text { and } \alpha \prec_{\text {lex }} \beta \text {. }
$$

Example: $X_{1}^{4} \prec_{\text {grlex }} X_{1}^{3} X_{2}^{3}$, while $X_{1}^{3} X_{2}^{3} \prec_{\text {lex }} X_{1}^{4}$.
! A grlex order relies on a choice of a lex order $\prec_{l e x}$ among the n ! possible. In the example, it is the one for which $X_{2} \prec X_{1}$.

Proposition 3 The graded lex orders are monomial orders.

Counter-example: revlex order

We give an example of total order on the monomials, that is not a monomial order.

Definition 4 Given two distinct multi-integers α and β, the revlex order is defined by:

$$
X^{\alpha} \prec_{\text {revlex }} X^{\beta} \Leftrightarrow \text { if } \ell:=\max \left\{1 \leq i \leq n \mid \alpha_{i} \neq \beta_{i}\right\}, \text { then } \alpha_{\ell}>\beta_{\ell}
$$

Example: $X_{2}^{2} \prec_{\text {revlex }} X_{1}^{2} X_{2} \prec_{\text {revlex }} X_{1} X_{2} \prec_{\text {revlex }} X_{2} \prec_{\text {revlex }} X_{1}^{3}$
Proposition 4 The revlex order is not a monomial order.
Proof:The strictly decreasing $\left(X_{2}^{i}\right)_{i \geq 1}$ does not terminate. With Lemma 2, this contradicts Property (iii) of Definition 1.

Example III: graded reverse lex order

Definition 5 Let two distinct multi-integers $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ in \mathbb{N}^{n}; we define the graded reverse lex order as:

$$
X^{\alpha} \prec_{\text {grevlex }} X^{\beta} \Leftrightarrow|\alpha|<|\beta| \text { or }|\alpha|=|\beta| \text { and } \alpha \prec_{\text {revlex }} \beta
$$

Example: $X_{3}^{3} \prec X_{2} X_{3}^{2} \cdots \prec X_{1} X_{2} X_{3} \prec X_{1}^{2} X_{3} \cdots \prec X_{2}^{3} \cdots \prec X_{1}^{3}$.
Proposition 5 The grevlex order is a monomial order.
Proof:It is a degree refinement of the revlex order. This prevents infinite decreasing sequences as in Proposition 4

Other monomial orders: Weighted degree orders, block orders. . .

Remark: A monomial order \prec defines an order relation on the multi-integer of \mathbb{N}^{n} (by taking the exponent). We may use freely the notation:

$$
\alpha, \beta \in \mathbb{N}^{n} \quad \alpha \prec \beta \quad \Longleftrightarrow \quad X^{\alpha} \prec X^{\beta} .
$$

Multi-degree. Leading term, monomial, coefficient. . .

Let \prec be a monomial order on $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$.
Let $f \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ (as usual given a multi-integer $\alpha, X^{\alpha}=X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}$).
Multi-degree: $\operatorname{mdeg}_{\prec}(f)=\max _{\prec}\left\{\alpha \in \mathbb{N}^{n} \mid\right.$ the monomial X^{α} occurs in $\left.f\right\}$.
Let $\beta=\operatorname{mdeg}_{\prec}(f) \in \mathbb{N}^{n}$. We write $f=\sum_{\alpha \in \mathbb{N}^{n}} f_{\alpha} X^{\alpha}$.
Leading monomial: $\mathrm{LM}_{\prec}(f):=X^{\beta}$.
Leading coefficient: $\mathrm{LC}_{\prec}(f):=p_{\beta}$.
Leading term: $\mathrm{LT}_{\prec}(f):=p_{\beta} X^{\beta}\left(=\mathrm{LC}_{\prec}(f) \mathrm{LM}_{\prec}(f)\right)$.
!!: These 4 definitions depend on the monomial order \prec.
If it is clear what is \prec, we write simply: $\operatorname{mdeg}(f), \operatorname{LM}(f), \operatorname{LC}(f), \operatorname{LT}(f)$.

Multi-degree. Leading term. . . (examples)

$f=x^{2} z^{2}+x y^{2} z+x y z^{2}+x^{3}+y^{3}$

	order \prec	mdeg $_{\prec}(f)$	$\mathrm{LM}_{\prec}(f)$
1	$\operatorname{lex}(x, y, z)$	$(3,0,0)$	x^{3}
2	$\operatorname{lex}(y, x, z)$	$(3,0,0)$	y^{3}
3	$\operatorname{grlex}(x, y, z)$	$(2,0,2)$	$x^{2} z^{2}$
4	$\operatorname{grlex}(z, y, x)$	$(2,1,1)$	$z^{2} y x$
5	$\operatorname{grevlex}(x, y, z)$	$(1,2,1)$	$x y^{2} z$
6	$\operatorname{grevlex}(z, y, x)$	$(2,1,1)$	$z^{2} y x$

Exercise: Over $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, prove that

$$
X^{\alpha} \prec_{\operatorname{revlex}\left(X_{1}, \ldots, X_{n}\right)} X^{\beta} \Longleftrightarrow X^{\alpha} \succ_{l e x}\left(X_{n}, \ldots, X_{1}\right) X^{\beta}
$$

Part III: The division algorithm

1 variable: The Euclidean algorithm works because a degree is strictly decreasing.
Multivariate polynomials: the monomial order permits to have a similar decreasing property.

Let \prec be a monomial order.
\# Inputs: $\quad f$ and $\left[f_{1}, \ldots, f_{s}\right]$ polynomial in $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$
(the sequence $\left[f_{1}, \ldots, f_{s}\right]$ is ordered, it is not a set)
\# Outputs: $r,\left[a_{1} \ldots, a_{s}\right]$ such that (a) $f=a_{1} f_{1}+\cdots a_{s} f_{s}+r$
(b) $\operatorname{LM}\left(f_{i}\right) \nmid m$, for any monomial m occuring in r (c) if $a_{i} f_{i} \neq 0$, then $\operatorname{LM}(f) \succcurlyeq \operatorname{LM}\left(a_{i} f_{i}\right)$

When $n=s=1$, it is the Euclidean algorithm (by conditions (a) and (b)).

```
    1: \(\quad\left[a_{1}, \ldots, a_{s}\right] \leftarrow[0, \ldots, 0]\)
2: \(\quad p \leftarrow f ; r \leftarrow 0\)
3: while \((p \neq 0)\) do
4: \(\quad i \leftarrow 1\)
5: \(\quad\) while \(\left(i \leq s\right.\) and \(\left.\operatorname{LM}\left(f_{i}\right) \nmid \operatorname{Lg}(p)\right)\) do: \(\quad i \leftarrow i+1 ; \quad\) end while
6: if \((i \leq s)\) then \(\quad / / \operatorname{LM}\left(f_{i}\right)\) divides \(\operatorname{LM}(p)\)
7: \(\quad a_{i} \leftarrow a_{i}+\frac{\operatorname{LT}(p)}{\operatorname{LT}\left(f_{i}\right)}\)
8: \(\quad p \leftarrow p-\frac{\operatorname{LT}(p)}{\operatorname{LT}\left(f_{i}\right)} f_{i}\)
9: else //there is no \(\operatorname{LM}\left(f_{i}\right)\) that divides \(\operatorname{LM}(p)\)
10: \(\quad r \leftarrow r+\operatorname{LT}(p) \quad / /\) the remainder is updated
11: \(\quad p \leftarrow p-\operatorname{LT}(p)\)
12: end if
13: end while
14: return \(\left[a_{1}, \ldots, a_{s}\right], r\)
```


About unicity (1/3)

Δ-sets: The exponents of the monomials in r and in a_{1}, \ldots, a_{s} are constrained to take certain values, defined by the following Δ-sets . Let $\alpha(i):=\operatorname{mdeg}_{\prec}\left(f_{i}\right) \in \mathbb{N}^{n}$. We define the following partition of \mathbb{N}^{n} :

$$
\begin{gathered}
\Delta_{1}=\alpha(1)+\mathbb{N}^{n}, \Delta_{2}=\alpha(2)+\mathbb{N}^{n}-\Delta_{1}, \ldots, \\
\Delta_{i}=\alpha(i)+\mathbb{N}^{n}-\left(\cup_{j=1}^{i-1} \Delta_{j}\right), \ldots, \Delta_{s}=\alpha(s)+\mathbb{N}^{n}-\left(\cup_{j=1}^{s-1} \Delta_{j}\right) .
\end{gathered}
$$

and finally $\bar{\Delta}=\mathbb{N}^{n}-\cup_{j=1}^{s} \Delta_{j}$. We have $\mathbb{N}^{n}=\cup_{j=1}^{s} \Delta_{j} \cup \bar{\Delta}$
Proposition 6 Any monomial X^{α} occuring in the remainder r verifies $\alpha \in \bar{\Delta}$. If X^{β} is a monomial occuring in a_{i}, then $\beta+\alpha(i) \in \Delta_{i}$.

Proof:(On the blackboard...)

About unicity (2/3)

Corollary 1 Let \prec be a monomial order on a polynomial algebra in n variables $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$. Given a polynomial f and a sequence of polynomials $\left[f_{1}, \ldots, f_{s}\right]$, the remainder r and the sequence $\left[a_{1}, \ldots a_{s}\right]$ computed by the division algorithm, are unique.

Proof:(On the blackboard...)
Corollary 2 If we fix the sequence $\left[f_{1}, \ldots, f_{s}\right]$ as above, then the map:

$$
\begin{aligned}
\mathbb{k}\left[X_{1}, \ldots, X_{n}\right] & \rightarrow \mathbb{k}\left[X_{1}, \ldots, X_{n}\right] \\
f & \mapsto r,
\end{aligned}
$$

is well-defined (unicity of the previous Corollary) and linear.
Proof:(On the blackboard...)

About unicity (3/3)

Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ be the ideal generated by the polynomial system $\left(f_{i}\right)_{1 \leq i \leq s}$ (as in the previous slide).

Aim: Like for the Euclidean division, we would like a linear map

$$
\begin{aligned}
\mathbb{k}\left[X_{1}, \ldots, X_{n}\right] / I & \longrightarrow \mathbb{k}\left[X_{1}, \ldots, X_{n}\right] \quad \text { (this map is not } \\
f+I & \longmapsto r .
\end{aligned}
$$

The ideal I would be the kernel of the map of Corollary 2.
But it doesn't work in general: the remainder r depends on the sequence $\left[f_{1}, \ldots, f_{s}\right]$ and not on the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ (easy counter-examples).

Also, if $r=0$ then $f \in I$, but there are some $g \in I$ whose division by $\left[f_{1}, \ldots, f_{s}\right]$ does not give a remainder $r=0$.

However, if f_{1}, \ldots, f_{s} is a Gröbner basis, it is OK...

