MMA 数学特論 I

Algorithms for polynomial systems: elimination & Gröbner bases 多項式系のアルゴリズム: グレブナー基底 & 消去法

Lecture III: The division algorithm

May, 6th 2010. Part I: Generalities on multivariate polynomials Part II: Monomial orders Part III: The algorithm

Part I: Generalities

The polynomial ring $R[X_1, \ldots, X_n]$ (1/3)

Notation: A multi-integer α is an element of \mathbb{N}^n , for a given n: hence, $\alpha = (\alpha_1, \ldots, \alpha_n)$, with $\alpha_i \in \mathbb{N}$.

Addition: Given $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_n)$ two multi-integers, we denote by $\alpha + \beta$ the multi-integer $(\alpha_1 + \beta_1, \ldots, \alpha_n + \beta_n)$.

For n > 1, $P \in R[X_1, \ldots, X_n]$ is a multivariate or *n*-variate polynomial, or a polynomial in *n* variables, with coefficients in (a commutative) ring *R*.

We write: $P = \sum_{\alpha \in \mathbb{N}^n} p_{\alpha} X^{\alpha}$, where $X^{\alpha} = X_1^{\alpha_1} \cdots X_n^{\alpha_n}$, and $p_{\alpha} \neq 0$ only for a finite number of multi-integers α .

Monomial: It is a polynomial P with all $p_{\alpha} = 0$ except for a multi-integer β , for which $p_{\beta} = 1$. This means $P = X_1^{\beta_1} \cdots X_n^{\beta_n}$.

The polynomial ring $R[X_1, \ldots, X_n]$ (2/3)

Coefficient: the ring R is called the coefficient ring of $R[X_1, \ldots, X_n]$. For a polynomial $P = \sum_{\alpha} p_{\alpha} X^{\alpha}$, the elements (p_{α}) are the coefficients of P. Given a multi-integer α , the coefficient p_{α} is the coefficient of (the monomial) X^{α} of P.

If $p_{\alpha} \neq 0$, we say that the monomial X^{α} occurs in P.

The coefficient $p_{(0,...,0)}$ is called the constant term of P.

Multiplication:
$$PQ = \sum_{\alpha \in \mathbb{N}^n} \left(\sum_{\substack{\beta, \gamma \in \mathbb{N}^n \\ \beta+\gamma=\alpha}} p_\beta q_\gamma \right) X^\alpha$$
 (notice that $PQ = QP$).

Ring structure: With the addition and multiplication above, $R[X_1, \ldots, X_n]$ is a commutative ring.

The polynomial ring $R[X_1, \ldots, X_n]$ (3/3)

Proposition 1 If R is an integral domain, then $R[X_1, \ldots, X_n]$ is also integral.

PROOF:By induction on n. When n = 1, it is proven in Lect. II. If this is true for polynomials in n - 1 variables over R, then let $R' = R[X_1, \ldots, X_{n-1}]$ in integral.

The case in 1 variable done in Lect. II shows that $R'[X_n]$ is integral. But $R'[X_n] = R[X_1, \ldots, X_n].$

Remark 1: Assume R = k is a field. Then $k[X_1, \ldots, X_n]$ is a k-vector space. As a ring, it is also a k-algebra.

The degree

Given a multi-integer $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$, the sum of α is $|\alpha| := \alpha_1 + \dots + \alpha_n$

The degree of a monomial X^{α} is $|\alpha|$.

The degree of a polynomial $P \in R[X_1, \ldots, X_n]$ is the maximal degree of one of the monomials occurring in P.

For any polynomials P and Q in $R[X_1, \ldots, X_n]$, we have:

- (i) $\deg(P+Q) \le \max\{\deg(P), \deg(Q)\}\)$, with equality if $\deg(P) \ne \deg(Q)$.
- (ii) $\deg(PQ) = \deg(P) + \deg(Q)$ (not true over any ring, but true over any *integral domain*)

Remark: Assume $R = \Bbbk$ is a field, and let $L \in \mathbb{N}^*$. Let $\Bbbk[X_1, \ldots, X_n]_{\leq L}$ be the set of polynomials of degree $\leq L$.

This is a sub-vector space of finite dimension (Exercise: what is the dimension ?)

The degree

By the 2 previous sildes, the following map is k-bilinear:

$$Mult : \quad \Bbbk[X_1, \dots, X_n]_{
$$(A, B) \qquad \longmapsto \quad AB$$$$

It follows that $k[X_1, \ldots, X_n]$ is a graded commutative algebra.

Remark 1: There are several monomials of same degree.

Remark 2: There is no Euclidean division !

Comment: The degree is sometimes called the total degree of a polynomial P. The partial degree in X_i of P, denoted $\deg_{X_i}(P)$ is the maximal exponent α_i of X_i among all the monomials occurring in P.

The partial degree is the degree of the univariate polynomial P seen in $R_i[X_i]$, whith $R_i = \Bbbk[X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n]$.

Polynomial function

Here we assume $R = \Bbbk$ is a field. Let $P \in \Bbbk[X_1, \ldots, X_n]$ be a polynomial. Function: The map $\Bbbk^n \to \Bbbk$, $(x_1, \ldots, x_n) \mapsto P(x_1, \ldots, x_n)$ is the function defined by P.

A zero of P is a point (x_1, \ldots, x_n) such that $P(x_1, \ldots, x_n) = 0$.

!!: There are some non-zero polynomials P, that defined the zero function. Example, even with n = 1: the non-zero polynomial $X^p - X \in \mathbb{F}_p[X]$ define the null function of $\mathbb{F}_p \to \mathbb{F}_p$.

Lemma 1 Assume that \Bbbk is infinite, and that there are some infinite subsets S_1, \ldots, S_n of \Bbbk such that:

$$\forall a_i \in S_i, \quad f(a_1, \dots, a_n) = 0.$$

Then f = 0 (the null polynomial).

PROOF: When n = 1 it is (Lect. I, Corollary 1). Then by induction on n. \Box

Ideals of $\Bbbk[X_1, \ldots, X_n]$

Definition of an ideal \rightarrow Lect. II, Definiton 3.

Example: Finitely generated ideals. The subset $\langle f_1, \ldots, f_s \rangle$ of $\Bbbk[X_1, \ldots, X_n]$ defined by:

$$\langle f_1, \ldots, f_s \rangle := \left\{ \sum_{i=1}^s f_i g_i, \quad g_i \in \mathbb{k}[X_1, \ldots, X_n] \right\},$$

is an ideal of $k[X_1, \ldots, X_n]$. Its basis f_1, \ldots, f_s is finite (it s a finitely generated ideal)

All the ideals of $k[X_1, \ldots, X_n]$ are finitely generated ! (Hilbert. Proof, next class).

A geometric interpretation

Suppose k is infinite (polynomials \iff polynomial functions). Let $F := \{f_1(X_1, \ldots, X_n), f_2(X_1, \ldots, X_n), \ldots, f_s(X_1, \ldots, X_n)\}$ a polynomial system.

A solution of F is a common zero of all the polynomials f_i (be careful: depends on the field extension).

Let $\mathbf{x} = (x_1, \dots, x_n)$ be a solution of F (in a field extension of \mathbf{k}).

Then for any polynomial $f \in \langle f_1, \ldots, f_s \rangle$, **x** is also a solution of f.

Consequence: Looking for solutions of a polynomial system F is the same as looking for solution of the ideal $\langle F \rangle$ generated by F.

Comment: It is actually a bit more complicated (problem of multiplicities especially \rightarrow Hilbert's Nullstellensatz).

Parts II & III: Division for multivariate polynomials Introduction

Aim: Given $f, f_1, \ldots, f_s \in \mathbb{k}[X_1, \ldots, X_n]$, write:

$$f = a_1 f_1 + \dots + a_s f_s + \mathbf{r},\tag{1}$$

with r have "smaller" monomials than those of f_1, \ldots, f_s . \rightarrow monomial orders

Unicity of the remainder r in Equation (1) ?

- \rightarrow **No** in general.
- \rightarrow **Yes** if the polynomials $(f_i)_i$ are ordered.

Ideal Membership: if $f \in \langle f_1, \ldots, f_s \rangle$, so we have r = 0?

- \rightarrow No in general.
- \rightarrow Yes if the polynomials $(f_i)_i$ form a Gröbner basis.

Part II: Monomial orders

Definition 1 A monomial order (or ordering) \prec on $\Bbbk[X_1, \ldots, X_n]$, is a relation on the set of monomials X^{α} , $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, such that:

(i) \prec is a total order (2 monomials can always be compared: if $\alpha \neq \beta$, then either $X^{\alpha} \prec X^{\beta}$, or $X^{\beta} \prec X^{\alpha}$).

(ii) if $X^{\alpha} \prec X^{\beta}$, then $X^{\alpha}X^{\gamma} \prec X^{\beta}X^{\gamma}$, for all $\gamma \in \mathbb{N}^{n}$.

(iii) \prec is a well-order: any non-empty subset of monomials has a smallest element.

Before giving examples, an useful lemma.

Lemma 2 An order relation \prec on the monomials of $\Bbbk[X_1, \ldots, X_n]$ is a well-order iff every strictly decreasing sequence

$$X^{\alpha(1)} \succ X^{\alpha(2)} \succ X^{\alpha(3)} \succ \cdots$$

eventually terminates ($\iff \exists \ell \mid \alpha(N) = \alpha(\ell) \; \forall N \ge \ell$).

Example I: lexicographic orders

Let us order the *n* variables: $X_n \prec X_{n-1} \prec \cdots \prec X_1$ (there are *n*! such possible orders: $X_{n-1} \prec X_n \prec \cdots \prec X_2 \prec X_1$ is another one, corresponding to the permutation (n-1, n), while $X_n \prec X_{n-1} \prec \cdots \prec X_1 \prec X_2$ corresponds to the permutation (1, 2)).

Definition 2 The lexicographic order \prec_{lex} on the monomials of $\Bbbk[X_1, \ldots, X_n]$ relatively to \prec is characterized by: For all multi-integers $\alpha \neq \beta$,

$$X^{\alpha} \prec_{lex} X^{\beta} \Leftrightarrow if \ell := \min\{1 \le i \le n \,|\, \alpha_i \ne \beta_i\}, then \, \alpha_{\ell} < \beta_{\ell}.$$

Example: $X_1^2 X_2^3 \prec_{lex} X_1^2 X_2^4$, since (2,3) - (2,4) = (0,-1) and -1 < 0

Proposition 2 The lex order is a monomial order.

PROOF:(i) and (ii) of Definition 1 are clearly verified, (iii) is proved using Lemma 2.

Example II: graded lex orders

The next two orders are called *degree* orders, or they are said to *refine the degree*. Recall that for a multi-integer $\alpha = (\alpha_1, \ldots, \alpha_n)$, we have $|\alpha| = \sum_{i=1}^n \alpha_i = \deg(X^{\alpha}).$

Definition 3 Given two distinct multi-integers $\alpha = (\alpha_i)_{1 \le i \le n}$ and $\beta = (\beta_i)_{1 \le i \le n} \in \mathbb{N}^n$, the graded lex order is characterized by

$$X^{\alpha} \prec_{grlex} X^{\beta} \Leftrightarrow |\alpha| < |\beta|, \ or \ |\alpha| = |\beta| \ and \ \alpha \prec_{lex} \beta.$$

Example: $X_1^4 \prec_{grlex} X_1^3 X_2^3$, while $X_1^3 X_2^3 \prec_{lex} X_1^4$.

! A greax order relies on a choice of a lex order \prec_{lex} among the n! possible. In the example, it is the one for which $X_2 \prec X_1$.

Proposition 3 The graded lex orders are monomial orders.

Counter-example: revlex order

We give an example of total order on the monomials, that *is not* a monomial order.

Definition 4 Given two distinct multi-integers α and β , the revlex order is defined by:

$$X^{\alpha} \prec_{revlex} X^{\beta} \Leftrightarrow if \ \ell := \max\{1 \le i \le n \mid \alpha_i \ne \beta_i\}, \ then \ \alpha_{\ell} > \beta_{\ell},$$

Example: $X_2^2 \prec_{revlex} X_1^2 X_2 \prec_{revlex} X_1 X_2 \prec_{revlex} X_2 \prec_{revlex} X_1^3$

Proposition 4 The revlex order is not a monomial order.

PROOF: The strictly decreasing $(X_2^i)_{i\geq 1}$ does not terminate. With Lemma 2, this contradicts Property (iii) of Definition 1.

Example III: graded reverse lex order

Definition 5 Let two distinct multi-integers $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_n)$ in \mathbb{N}^n ; we define the graded reverse lex order as:

 $X^{\alpha} \prec_{grevlex} X^{\beta} \Leftrightarrow |\alpha| < |\beta| \text{ or } |\alpha| = |\beta| \text{ and } \alpha \prec_{revlex} \beta$

Example: $X_3^3 \prec X_2 X_3^2 \cdots \prec X_1 X_2 X_3 \prec X_1^2 X_3 \cdots \prec X_2^3 \cdots \prec X_1^3$.

Proposition 5 The grevlex order is a monomial order.

PROOF: It is a degree refinement of the revlex order. This prevents infinite decreasing sequences as in Proposition 4 \Box

Other monomial orders: Weighted degree orders, block orders...

Remark: A monomial order \prec defines an order relation on the multi-integer of \mathbb{N}^n (by taking the exponent). We may use freely the notation:

$$\alpha, \beta \in \mathbb{N}^n \quad \alpha \prec \beta \iff X^\alpha \prec X^\beta.$$

Multi-degree. Leading term, monomial, coefficient...

Let \prec be a monomial order on $\Bbbk[X_1, \ldots, X_n]$.

Let $f \in \mathbb{k}[X_1, \dots, X_n]$ (as usual given a multi-integer α , $X^{\alpha} = X_1^{\alpha_1} \cdots X_n^{\alpha_n}$). Multi-degree: $\mathsf{mdeg}_{\prec}(f) = \max_{\prec} \{ \alpha \in \mathbb{N}^n \mid \text{the monomial } X^{\alpha} \text{ occurs in } f \}.$

Let $\beta = \mathsf{mdeg}_{\prec}(f) \in \mathbb{N}^n$. We write $f = \sum_{\alpha \in \mathbb{N}^n} f_{\alpha} X^{\alpha}$. Leading monomial: $\mathsf{LM}_{\prec}(f) := X^{\beta}$.

Leading coefficient: $LC_{\prec}(f) := p_{\beta}$.

Leading term: $\operatorname{LT}_{\prec}(f) := p_{\beta} X^{\beta} (= \operatorname{LC}_{\prec}(f) \operatorname{LM}_{\prec}(f)).$

!!: These 4 definitions **depend** on the monomial order \prec .

If it is **clear** what is \prec , we write simply: $\mathsf{mdeg}(f), \mathsf{LM}(f), \mathsf{LC}(f), \mathsf{LT}(f)$.

Multi-degree. Leading term...(examples)

 $f = x^2 z^2 + xy^2 z + xyz^2 + x^3 + y^3$

	order \prec	$mdeg_\prec(f)$	$\operatorname{LM}_{\prec}(f)$
1	lex(x,y,z)	(3,0,0)	x^3
2	lex(y,x,z)	(3,0,0)	y^3
3	grlex(x,y,z)	(2,0,2)	$x^2 z^2$
4	grlex(z,y,x)	(2,1,1)	z^2yx
5	grevlex(x,y,z)	(1,2,1)	xy^2z
6	grevlex(z,y,x)	(2,1,1)	z^2yx

Exercise: Over $\Bbbk[X_1, \ldots, X_n]$, prove that

$$X^{\alpha} \prec_{revlex(X_1,...,X_n)} X^{\beta} \iff X^{\alpha} \succ_{lex(X_n,...,X_1)} X^{\beta}.$$

Part III: The division algorithm

1 variable: The Euclidean algorithm works because a degree is strictly decreasing.

Multivariate polynomials: the monomial order permits to have a similar decreasing property.

Let \prec be a monomial order.

Inputs: f and $[f_1, \ldots, f_s]$ polynomial in $\mathbb{k}[X_1, \ldots, X_n]$ (the sequence $[f_1, \ldots, f_s]$ is ordered, it is not a set) # Outputs: $r, [a_1 \ldots, a_s]$ such that (a) $f = a_1 f_1 + \cdots a_s f_s + r$ (b) $\mathrm{LM}(f_i) \nmid m$, for any monomial m occuring in r(c) if $a_i f_i \neq 0$, then $\mathrm{LM}(f) \succcurlyeq \mathrm{LM}(a_i f_i)$

When n = s = 1, it is the Euclidean algorithm (by conditions (a) and (b)).

1:
$$[a_1, \ldots, a_s] \leftarrow [0, \ldots, 0]$$

2: $p \leftarrow f$; $r \leftarrow 0$
3: while $(p \neq 0)$ do
4: $i \leftarrow 1$
5: while $(i \leq s \text{ and } \operatorname{LM}(f_i) \nmid \operatorname{LM}(p))$ do: $i \leftarrow i + 1$; end while
6: if $(i \leq s)$ then $//\operatorname{LM}(f_i)$ divides $\operatorname{LM}(p)$
7: $a_i \leftarrow a_i + \frac{\operatorname{LT}(p)}{\operatorname{LT}(f_i)}$
8: $p \leftarrow p - \frac{\operatorname{LT}(p)}{\operatorname{LT}(f_i)} f_i$
9: else $//$ there is no $\operatorname{LM}(f_i)$ that divides $\operatorname{LM}(p)$
10: $r \leftarrow r + \operatorname{LT}(p)$ $//$ the remainder is updated
11: $p \leftarrow p - \operatorname{LT}(p)$
12: end if
13: end while
14: return $[a_1, \ldots, a_s], r$

About unicity (1/3)

 Δ -sets: The exponents of the monomials in r and in a_1, \ldots, a_s are constrained to take certain values, defined by the following Δ -sets.

Let $\alpha(i) := \mathsf{mdeg}_{\prec}(f_i) \in \mathbb{N}^n$. We define the following partition of \mathbb{N}^n :

$$\Delta_1 = \alpha(1) + \mathbb{N}^n$$
, $\Delta_2 = \alpha(2) + \mathbb{N}^n - \Delta_1$, ...,

$$\Delta_i = \alpha(i) + \mathbb{N}^n - \left(\bigcup_{j=1}^{i-1} \Delta_j \right) , \dots , \Delta_s = \alpha(s) + \mathbb{N}^n - \left(\bigcup_{j=1}^{s-1} \Delta_j \right)$$

and finally $\overline{\Delta} = \mathbb{N}^n - \bigcup_{j=1}^s \Delta_j$. We have $\mathbb{N}^n = \bigcup_{j=1}^s \Delta_j \cup \overline{\Delta}$

Proposition 6 Any monomial X^{α} occuring in the remainder r verifies $\alpha \in \overline{\Delta}$. If X^{β} is a monomial occuring in a_i , then $\beta + \alpha(i) \in \Delta_i$. PROOF: (On the blackboard...)

About unicity (2/3)

Corollary 1 Let \prec be a monomial order on a polynomial algebra in n variables $k[X_1, \ldots, X_n]$. Given a polynomial f and a sequence of polynomials $[f_1, \ldots, f_s]$, the remainder r and the sequence $[a_1, \ldots, a_s]$ computed by the division algorithm, are unique.

PROOF: (On the blackboard...)

Corollary 2 If we fix the sequence $[f_1, \ldots, f_s]$ as above, then the map:

$$\begin{aligned} & \Bbbk[X_1, \dots, X_n] & \to & \Bbbk[X_1, \dots, X_n] \\ & f & \mapsto & r, \end{aligned}$$

is well-defined (unicity of the previous Corollary) and linear. PROOF: (On the blackboard...)

About unicity (3/3)

Let $I = \langle f_1, \ldots, f_s \rangle$ be the ideal generated by the polynomial system $(f_i)_{1 \leq i \leq s}$ (as in the previous slide).

Aim: Like for the Euclidean division, we would like a linear map

$$\begin{aligned} & \Bbbk[X_1, \dots, X_n]/I & \longrightarrow & \Bbbk[X_1, \dots, X_n] & (this map is not \\ & f+I & \longmapsto & r. & correct in general!) \end{aligned}$$

The ideal I would be the kernel of the map of Corollary 2.

But it doesn't work in general: the remainder r depends on the sequence $[f_1, \ldots, f_s]$ and not on the ideal $\langle f_1, \ldots, f_s \rangle$ (easy counter-examples). Also, if r = 0 then $f \in I$, but there are some $g \in I$ whose division by $[f_1, \ldots, f_s]$ does not give a remainder r = 0. However, if f_1, \ldots, f_s is a Gröbner basis, it is OK...