MMA 数学特論 I

Algorithms for polynomial systems： elimination \＆Gröbner bases
多項式系のアルゴリズム：グレブナー基底 \＆消去法

Lecture IV：Gröbner bases

May，20th 2010．Part I：Monomial ideals
May，27th 2010．Part II：Definition and first properties

Part I: Monomial ideals

Definition 1 An ideal I of $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ is a monomial ideal if it is generated by some monomials: $I=\left\langle X^{\alpha} \mid \alpha \in \mathcal{A}\right\rangle$, where $\mathcal{A} \subset \mathbb{N}^{n}$ is a subset, non necessarily finite, of multi-integers.
Example: $x^{2}+x y^{3} \in\left\langle x^{2}, y^{3}\right\rangle$.
Lemma $1 \bullet$ A monomial X^{β} belongs to a monomial ideal $\left\langle X^{\alpha} \mid \alpha \in \mathcal{A}\right\rangle$ iff there exists $\alpha \in \mathcal{A}$, such that $X^{\alpha} \mid X^{\beta}$.

- A polynomial $f \in\left\langle X^{\alpha} \mid \alpha \in \mathcal{A}\right\rangle$, iff each monomial occuring in f is in $\left\langle X^{\alpha} \mid \alpha \in \mathcal{A}\right\rangle$.
Proof:(On the blackboard...)
Corollary 1 Let $I=\left\langle X^{\alpha(1)}, \ldots, X^{\alpha(s)}\right\rangle$, be a finitely generated monomial ideal. The remainder of the division of a polynomial $f \in I$ by the monomials $X^{\alpha(1)}, \ldots, X^{\alpha(s)}$, is always null (whatever the sequence order these monomials are taken to perform the division).

Dickson's lemma

Corollary 2 Two monomial ideals are equal if and only they contain the same monomials.

Proof:Exercise 5 of Practice test II.

Actually, all monomial ideals are finitely generated.
Theorem 1 (Dickson's lemma) Let I be a monomial ideal, generated by an infinite family $\left\{X^{\alpha} \mid \alpha \in \mathcal{A}\right\}$ of monomials. There exists a finite subfamily $\mathcal{A}^{\prime} \subset \mathcal{A}$ such that $I=\left\langle X^{\alpha} \mid \alpha \in \mathcal{A}^{\prime}\right\rangle$.

Proof:We must show that there exists some multi-integers
$\alpha(1), \ldots, \alpha(s) \in \mathcal{A}$ such that $I=\left\langle X^{\alpha(1)}, \ldots, X^{\alpha(s)}\right\rangle$.
By induction on the number of variables n. If $n=1$, then the monomial of minimal degree generates the ideal.
If $n>1 \ldots .$. (the end on the blackboard)

New definition of monomial orders

Definition $2 A$ monomial order \prec on $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, is a relation on the set of monomials $X^{\alpha}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, such that:
(i) \prec is a total order (2 monomials can always be compared: if $\alpha \neq \beta$, then either $X^{\alpha} \prec X^{\beta}$, or $X^{\beta} \prec X^{\alpha}$).
(ii) if $X^{\alpha} \prec X^{\beta}$, then $X^{\alpha} X^{\gamma} \prec X^{\beta} X^{\gamma}$, for all $\gamma \in \mathbb{N}^{n}$.
(iii) \prec is a well-order: any non-empty subset of monomials has a smallest element.
(iii') For all monomials $X^{\alpha}, \alpha \in \mathbb{N}^{n}$, holds: $\alpha \succcurlyeq(0, \ldots, 0)$.
Proof:(iii) \Rightarrow (iii'). The whole set of monomials admit a smallest element, denoted α_{0}. If $\alpha_{0} \prec 0$, then by Property (ii), $2 \alpha_{0} \prec \alpha_{0}$ is even smaller, contradicts the minimality of α_{0}.
(iii') \Rightarrow (iii)(on the blackboard)

Ideal of leading terms

Definition 3 Let \prec be a monomial order, and $I \subset \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ be a non-zero ideal. Let

$$
\mathrm{LM}_{\prec}(I):=\left\{X^{\alpha} \text { s.t. } \exists f \in I \text { with } \mathrm{LM}_{\prec}(f)=X^{\alpha}\right\}
$$

The monomial ideal $\left\langle\mathrm{LM}_{\prec}(I)\right\rangle$ is called the ideal of leading terms of I.
! Leading terms? It is possible to define similarly the ideal $\langle\operatorname{LT}(I)\rangle$. Over a field $\mathbb{k},\langle\operatorname{LM}(I)\rangle=\langle\operatorname{LT}(I)\rangle$ since the leading coefficient $\operatorname{LC}(f)$ of the leading term $\operatorname{LT}(f)$ of a polynomial in $f \in I$ can be inverted.
!! If $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, then $\left\langle\operatorname{LM}\left(f_{1}\right), \ldots, \operatorname{LM}\left(f_{s}\right)\right\rangle \subsetneq\langle\operatorname{LM}(I)\rangle$ (in general)
Example: $f_{1}=X^{3}-2 X Y$ and $f_{2}=X^{2} Y-2 Y^{2}+X, \prec$ is the grlex monomial ordering......

Hilbert's finite basis theorem

Theorem 2 Every ideal $I \subset \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ admits a finite basis.
Proof:If $I=\{0\}$, there is nothing to do. If $\{0\} \subsetneq I \ldots$ (on the blackboard)
Definition $4 A$ Notherian ring is a (commutative) ring R verifying the ascending chain condition ($A C C$):
(ACC) All increasing sequences $\left(I_{j}\right)_{j \in \mathbb{N}}$ of ideals of R stabilize:
$\exists n \in \mathbb{N}$ such that $I_{n}=I_{n+1}=I_{n+2}=\cdots$.
Theorem 3 The ring $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian.
Proof:Consider an increasing sequence $\left(I_{j}\right)_{j \in \mathbb{N}}$ of ideals and take $I=\bigcup_{j \in \mathbb{N}} I_{j}$. This is an ideal, it admits a finite basis by Theorem 1 etc......

Part II: Gröbner bases

Definition

Definition 5 For a monomial order \prec on a polynomial algebra $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ and an ideal I, a family $\left\{g_{1}, \ldots, g_{s}\right\}$ of polynomials in I is a Gröbner basis if:

$$
\left\langle\operatorname{LM}\left(g_{1}\right), \ldots, \operatorname{LM}\left(g_{s}\right)\right\rangle=\langle\operatorname{LM}(I)\rangle . \quad(\text { correction }: \text { LM not } \mathrm{LT})
$$

Corollary 3 Given a monomial order \prec, every non-zero ideal admits a Gröbner basis for \prec.

Normal form (1/3)

Let $G=\left[g_{1}, \ldots, g_{s}\right]$ be some polynomials, \prec a monomial order.
For any polynomial $f \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ let $\mathrm{NF}_{\prec}(f, G)$ denotes the remainder of the division of f by the sequence $\left[g_{1}, \ldots, g_{s}\right]$ with respect to (w.r.t.) the order \prec (uniquely determined \rightarrow Corollary 1).

If G is a Gröbner basis for \prec of the ideal $I:=\langle G\rangle$ it generates, then:
For all permutation $\sigma \in \mathfrak{S}_{n}$, we have:

$$
\begin{equation*}
\mathrm{NF}_{\prec}(f, G)=\mathrm{NF}_{\prec}\left(f,\left[g_{\sigma(1)}, \ldots, g_{\sigma(n)}\right]\right) . \tag{1}
\end{equation*}
$$

\rightarrow the remainder does not depend on the order of the sequence of polynomials by which f is divided.
!! But if $f=a_{1} g_{1}+\cdots+a_{s} g_{s}+\mathrm{NF}_{\prec}(f, G)$, and if
$f=b_{1} g_{\sigma(1)}+\cdots+b_{s} g_{\sigma(s)}+\mathrm{NF}_{\prec}(f, G)$, then $b_{i} \neq a_{\sigma(i)}$, in general.

Normal form (2/3)

Proof:Let r and r^{\prime} be the remainders of the division of f by two differently ordered sequences of the same set of polynomials $\left\{g_{1}, \ldots, g_{s}\right\}$.

Then $r-r^{\prime} \in I$, so if $r \neq r^{\prime}$ then
$\operatorname{LM}\left(r-r^{\prime}\right) \in \operatorname{LM}(I) \subset\langle\operatorname{LM}(I)\rangle=\left\langle\operatorname{LM}\left(g_{1}\right), \ldots, \operatorname{LM}\left(g_{s}\right)\right\rangle$. By Lemma 1, there exists i such that $\operatorname{LM}\left(g_{i}\right) \mid \operatorname{LM}\left(r-r^{\prime}\right)$.

But both r and r^{\prime} being remainders, all their terms are not divisible by any of the $\operatorname{LM}\left(g_{j}\right)$, which contradicts $\operatorname{LM}\left(g_{i}\right) \mid \operatorname{LM}\left(r-r^{\prime}\right)$. Hence, $r=r^{\prime}$.

Example: $G=\{x+y, y-z\}$ is a Gröbner basis for $x \succ_{l e x} y$ (to check). The divisions of $x y$ by $[x+y, y-z]$ and by $[y-z, x+y]$ are not the same (but the remainder $\mathrm{NF}(x y, G)=-z^{2}$ is, verifying Equation (1)).

Practical consequence of the Normal Form (3/3)

Theorem 4 (ideal membership) Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ be an ideal of $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right], f \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, and \prec any monomial order on $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$. Let G be a Gröbner basis of I w.r.t. to \prec. We have:

$$
f \in I \Longleftrightarrow \mathrm{NF}_{\prec}(f, G)=0 .
$$

Proof: \Leftarrow trivial. For \Rightarrow, see Exercise 6 of Practice test II.
Canonical representation of $f \bmod I$: With the notations above, the map:

$$
\begin{aligned}
\phi_{G}: \mathbb{k}\left[X_{1}, \ldots, X_{n}\right] & \longrightarrow \mathbb{k}\left[X_{1}, \ldots, X_{n}\right] \\
f & \longmapsto \operatorname{NF}_{\prec}(f, G),
\end{aligned}
$$

is linear (Lect. III, Slide 22). If we define $\phi_{G}\left(g_{1} g_{2}\right):=\phi_{G}\left(\phi_{G}\left(g_{1}\right) \phi_{G}\left(g_{2}\right)\right)$, then ϕ_{G} is a ring homomorphism.
By Theorem $4, \operatorname{ker} \phi_{G}=I \stackrel{\text { Lect. II,Slide } 11}{\Longrightarrow} \mathbb{k}\left[X_{1}, \ldots, X_{n}\right] / I \hookrightarrow \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$.

Minimal Gröbner basis

Fact: According to the definition, if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis, then any $\left\{g_{1}, \ldots, g_{s}\right\} \cup\left\{g_{i}+g_{j}\right\}$ is also a Gröbner basis. Of course, $g_{i}+g_{j}$ is useless !
We have $g_{i}+g_{j} \in\left\langle g_{1}, \ldots, g_{s}\right\rangle=I$, so
$\operatorname{LM}\left(g_{1}+g_{2}\right) \in\langle\operatorname{LM}(I)\rangle=\left\langle\operatorname{LM}\left(g_{1}\right), \ldots, \operatorname{LM}\left(g_{s}\right)\right\rangle$.
So $\left\{g_{1}, \ldots, g_{s}, g_{i}+g_{j}\right\}$ is a non-minimal Gröbner basis.
\rightarrow Refinement of the definition of Gröbner bases:
Definition 6 A minimal Gröbner basis of a polynomial ideal I (for a given monomial order) is a Gröbner basis G of I such that:
(i) For all $p \in G, \operatorname{LM}(p) \notin\langle\operatorname{LM}(G-\{p\})\rangle$

If the additional condition,
(ii) $\operatorname{LC}(P)=1$ for all $P \in G$.
holds, then the minimal Gröbner basis G is monic.

Extraction of a minimal Gröbner basis

In practice: Very easy to remove redundant polynomials of a Gröbner basis: check only the leading monomials.

Extraction: Given a Gröbner basis G, how to compute the a minimal Gröbner basis G^{\prime} from G ?

Let $p \in G$. If $\operatorname{LM}(p) \in\langle\operatorname{LM}(G-\{p\})\rangle$ then we can remove p from G : $\langle\operatorname{LM}(G-\{p\})\rangle=\langle\operatorname{LM}(G)\rangle \stackrel{\text { by def }}{=}\langle\operatorname{LM}(I)\rangle$. OK !

Algorithm of extraction.

\# Input: A Gröbner basis $G=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ of an ideal I, for a monomial order \prec.
\# Output: A minimal Gröbner basis $G^{\prime}=\left\{g_{1}^{\prime}, \ldots, g_{t}^{\prime}\right\}$ of I such that: $t \leq s$ and for $i=1, \ldots, t$ holds $g_{i}^{\prime} \in G$.

1: $\quad G^{\prime} \leftarrow\left[g_{1}\right] ; s^{\prime} \leftarrow 1 / / s^{\prime}$ is the caridnal of G^{\prime}
2: for $i=2, \ldots, s$ do
3: $\quad j \leftarrow 1 ; g^{\prime} \leftarrow G^{\prime}[j] \quad / /$ given a list $L=\left[L_{1}, \ldots, L_{t}\right], L[j]$ means L_{j}
4: \quad while $\left(j \leq s^{\prime}\right.$ and $\operatorname{LM}\left(g_{i}\right) \nmid \operatorname{LM}\left(g^{\prime}\right)$ and $\left.\operatorname{LM}\left(g^{\prime}\right) \nmid \operatorname{LM}\left(g_{i}\right)\right)$ do

$$
j \leftarrow j+1 ; g^{\prime} \leftarrow G^{\prime}[j]
$$

end while
5: if $\left(j=s^{\prime}+1\right)$ then $G^{\prime} \leftarrow G^{\prime}$ cat $\left[g_{i}\right] ; s^{\prime} \leftarrow s^{\prime}+1 / /$ "cat" means... else // ... concatenate. Example: $[1,3,6]$ cat $[4]=[1,3,6,4]$
6: \quad if $\left(\operatorname{LM}\left(g_{i}\right) \mid \operatorname{LM}\left(g^{\prime}\right)\right)$ then $G^{\prime} \leftarrow\left(G^{\prime}-g^{\prime}\right)$ cat $\left[g_{i}\right] / /$ the symbol $-\ldots$ end if // ...means "remove". Example $[1,3,6,4]-[3]=[1,6,4]$ end if
end for
7: return G^{\prime}

Reduced Gröbner bases

Question: Given a polynomial ideal I, is a minimal Gröbner basis of I (for a given monomial order) unique? No! For example $\left\{y, x-\frac{b}{a} y\right\}$, for any b and any $a \neq 0$ are all minimal Gröbner bases for $y \prec_{l e x} x$.
\rightarrow another refinement of the definition of Gröbner basis:
Definition 7 A Gröbner basis G is reduced if:
(ii) $\forall p \in G$, all monomials m occurring in p, $m \notin\langle\operatorname{LM}(G-\{p\})\rangle$.

Moreover, it is a reduced monic Gröbner basis if:
(ii) $\operatorname{LC}(p)=1$ for all $p \in G$.

Lemma 2 There exists a reduced Gröbner basis, and a unique monic one.
Proof:Existence: Modify the initial Gröbner basis (that we can assume to be minimal) until each of its element is reduced ($g \in G^{\prime}$ is reduced $\stackrel{\text { def }}{\Leftrightarrow}$ no monomials occurring in g are in $\left.\left\langle\operatorname{LM}\left(G^{\prime}\right)\right\rangle\right) \ldots$ (end on the blackboard)

