MMA 数学特論 I

Algorithms for polynomial systems: elimination & Gröbner bases 多項式系のアルゴリズム: グレブナー基底 & 消去法

Lecture IV: Gröbner bases

May, 20th 2010. Part I: Monomial idealsMay, 27th 2010. Part II: Definition and first properties

Part I: Monomial ideals

Definitions

Definition 1 An ideal I of $\mathbb{k}[X_1, \ldots, X_n]$ is a monomial ideal if it is generated by some monomials: $I = \langle X^{\alpha} \mid \alpha \in \mathcal{A} \rangle$, where $\mathcal{A} \subset \mathbb{N}^n$ is a subset, non necessarily finite, of multi-integers.

Example: $x^2 + xy^3 \in \langle x^2, y^3 \rangle$.

Lemma 1 • A monomial X^{β} belongs to a monomial ideal $\langle X^{\alpha} | \alpha \in \mathcal{A} \rangle$ iff there exists $\alpha \in \mathcal{A}$, such that $X^{\alpha} | X^{\beta}$.

• A polynomial $f \in \langle X^{\alpha} \mid \alpha \in \mathcal{A} \rangle$, iff each monomial occuring in f is in $\langle X^{\alpha} \mid \alpha \in \mathcal{A} \rangle$.

PROOF:(On the blackboard...)

Corollary 1 Let $I = \langle X^{\alpha(1)}, \ldots, X^{\alpha(s)} \rangle$, be a finitely generated monomial ideal. The remainder of the division of a polynomial $f \in I$ by the monomials $X^{\alpha(1)}, \ldots, X^{\alpha(s)}$, is always null (whatever the sequence order these monomials are taken to perform the division).

Dickson's lemma

Corollary 2 Two monomial ideals are equal if and only they contain the same monomials.

PROOF:Exercise 5 of Practice test II.

Actually, all monomial ideals are finitely generated.

Theorem 1 (Dickson's lemma) Let I be a monomial ideal, generated by an infinite family $\{X^{\alpha} \mid \alpha \in \mathcal{A}\}$ of monomials. There exists a finite subfamily $\mathcal{A}' \subset \mathcal{A}$ such that $I = \langle X^{\alpha} \mid \alpha \in \mathcal{A}' \rangle$.

PROOF: We must show that there exists some multi-integers $\alpha(1), \ldots, \alpha(s) \in \mathcal{A}$ such that $I = \langle X^{\alpha(1)}, \ldots, X^{\alpha(s)} \rangle$.

By induction on the number of variables n. If n = 1, then the monomial of minimal degree generates the ideal.

If n > 1 (the end on the blackboard)

New definition of monomial orders

Definition 2 A monomial order \prec on $\Bbbk[X_1, \ldots, X_n]$, is a relation on the set of monomials X^{α} , $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, such that:

(i) \prec is a total order (2 monomials can always be compared: if $\alpha \neq \beta$, then either $X^{\alpha} \prec X^{\beta}$, or $X^{\beta} \prec X^{\alpha}$).

(ii) if $X^{\alpha} \prec X^{\beta}$, then $X^{\alpha}X^{\gamma} \prec X^{\beta}X^{\gamma}$, for all $\gamma \in \mathbb{N}^{n}$.

(iii) \prec is a well-order: any non-empty subset of monomials has a smallest element.

(iii) For all monomials X^{α} , $\alpha \in \mathbb{N}^n$, holds: $\alpha \succcurlyeq (0, \ldots, 0)$.

PROOF:(iii) \Rightarrow (iii'). The whole set of monomials admit a smallest element, denoted α_0 . If $\alpha_0 \prec 0$, then by Property (ii), $2\alpha_0 \prec \alpha_0$ is even smaller, contradicts the minimality of α_0 .

 $(iii') \Rightarrow (iii) \dots (on the blackboard)$

Ideal of leading terms

Definition 3 Let \prec be a monomial order, and $I \subset \Bbbk[X_1, \ldots, X_n]$ be a non-zero ideal. Let

$$LM_{\prec}(I) := \{ X^{\alpha} \text{ s.t. } \exists f \in I \text{ with } LM_{\prec}(f) = X^{\alpha} \}$$

The monomial ideal $(LM_{\prec}(I))$ is called the ideal of leading terms of I.

! Leading terms? It is possible to define similarly the ideal $\langle LT(I) \rangle$. Over a field k, $\langle LM(I) \rangle = \langle LT(I) \rangle$ since the leading coefficient LC(f) of the leading term LT(f) of a polynomial in $f \in I$ can be inverted.

If $I = \langle f_1, \ldots, f_s \rangle$, then $\langle LM(f_1), \ldots, LM(f_s) \rangle \subsetneq \langle LM(I) \rangle$ (in general) Example: $f_1 = X^3 - 2XY$ and $f_2 = X^2Y - 2Y^2 + X$, \prec is the grlex monomial ordering.....

Hilbert's finite basis theorem

Theorem 2 Every ideal $I \subset \Bbbk[X_1, \ldots, X_n]$ admits a finite basis.

PROOF: If $I = \{0\}$, there is nothing to do. If $\{0\} \subseteq I \dots$ (on the blackboard)

Definition 4 A Noetherian ring is a (commutative) ring R verifying the ascending chain condition (ACC):

(ACC) All increasing sequences $(I_j)_{j \in \mathbb{N}}$ of ideals of R stabilize:

 $\exists n \in \mathbb{N} \text{ such that } I_n = I_{n+1} = I_{n+2} = \cdots$

Theorem 3 The ring $\Bbbk[X_1, \ldots, X_n]$ is Nætherian.

PROOF: Consider an increasing sequence $(I_j)_{j \in \mathbb{N}}$ of ideals and take $I = \bigcup_{j \in \mathbb{N}} I_j$. This is an ideal, it admits a finite basis by Theorem 1 etc.....

Part II: Gröbner bases

Definition 5 For a monomial order \prec on a polynomial algebra $\Bbbk[X_1, \ldots, X_n]$ and an ideal I, a family $\{g_1, \ldots, g_s\}$ of polynomials in I is a Gröbner basis *if*:

$$\langle LM(g_1), \ldots, LM(g_s) \rangle = \langle LM(I) \rangle.$$
 (correction: LM not LT)

Corollary 3 Given a monomial order \prec , every non-zero ideal admits a Gröbner basis for \prec .

Normal form (1/3)

Let $G = [g_1, \ldots, g_s]$ be some polynomials, \prec a monomial order.

For any polynomial $f \in \mathbb{k}[X_1, \ldots, X_n]$ let $NF_{\prec}(f, G)$ denotes the remainder of the division of f by the sequence $[g_1, \ldots, g_s]$ with respect to (w.r.t.) the order \prec (uniquely determined \rightarrow Corollary 1).

If G is a Gröbner basis for \prec of the ideal $I := \langle G \rangle$ it generates, then: For all permutation $\sigma \in \mathfrak{S}_n$, we have:

$$NF_{\prec}(f,G) = NF_{\prec}(f, [g_{\sigma(1)}, \dots, g_{\sigma(n)}]).$$
(1)

 \rightarrow the remainder does not depend on the order of the sequence of polynomials by which f is divided.

I But if
$$f = a_1g_1 + \dots + a_sg_s + NF_{\prec}(f,G)$$
, and if
 $f = b_1g_{\sigma(1)} + \dots + b_sg_{\sigma(s)} + NF_{\prec}(f,G)$, then $b_i \neq a_{\sigma(i)}$, in general.

Normal form (2/3)

PROOF:Let r and r' be the remainders of the division of f by two differently ordered sequences of the same set of polynomials $\{g_1, \ldots, g_s\}$.

Then $r - r' \in I$, so if $r \neq r'$ then $LM(r - r') \in LM(I) \subset \langle LM(I) \rangle = \langle LM(g_1), \dots, LM(g_s) \rangle$. By Lemma 1, there exists *i* such that $LM(g_i)|LM(r - r')$.

But both r and r' being remainders, all their terms are not divisible by any of the $LM(g_j)$, which contradicts $LM(g_i)|LM(r-r')$. Hence, r = r'. \Box

Example: $G = \{x + y, y - z\}$ is a Gröbner basis for $x \succ_{lex} y$ (to check). The divisions of xy by [x + y, y - z] and by [y - z, x + y] are not the same (but the remainder NF $(xy, G) = -z^2$ is, verifying Equation (1)).

Practical consequence of the Normal Form (3/3)

Theorem 4 (ideal membership) Let $I = \langle f_1, \ldots, f_s \rangle$ be an ideal of $\Bbbk[X_1, \ldots, X_n], f \in \Bbbk[X_1, \ldots, X_n], and \prec any monomial order on <math>\Bbbk[X_1, \ldots, X_n]$. Let G be a Gröbner basis of I w.r.t. to \prec . We have:

 $f \in I \iff \operatorname{NF}_{\prec}(f,G) = 0.$

PROOF: \Leftarrow trivial. For \Rightarrow , see Exercise 6 of Practice test II.

Canonical representation of $f \mod I$: With the notations above, the map:

$$\phi_G : \mathbb{k}[X_1, \dots, X_n] \longrightarrow \mathbb{k}[X_1, \dots, X_n]$$
$$f \longmapsto \operatorname{NF}_{\prec}(f, G),$$

is linear (Lect. III, Slide 22). If we define $\phi_G(g_1g_2) := \phi_G(\phi_G(g_1)\phi_G(g_2))$, then ϕ_G is a ring homomorphism.

By Theorem 4, $\ker \phi_G = I \xrightarrow{\text{Lect. II,Slide 11}} \mathbb{k}[X_1, \dots, X_n]/I \hookrightarrow \mathbb{k}[X_1, \dots, X_n].$

Minimal Gröbner basis

Fact: According to the definition, if $\{g_1, \ldots, g_s\}$ is a Gröbner basis, then any $\{g_1, \ldots, g_s\} \cup \{g_i + g_j\}$ is also a Gröbner basis. Of course, $g_i + g_j$ is useless ! We have $g_i + g_j \in \langle g_1, \ldots, g_s \rangle = I$, so $\operatorname{LM}(g_1 + g_2) \in \langle \operatorname{LM}(I) \rangle = \langle \operatorname{LM}(g_1), \ldots, \operatorname{LM}(g_s) \rangle$. So $\{g_1, \ldots, g_s, g_i + g_j\}$ is a non-minimal Gröbner basis.

 \rightarrow Refinement of the definition of Gröbner bases:

Definition 6 A minimal Gröbner basis of a polynomial ideal I (for a given monomial order) is a Gröbner basis G of I such that:

(i) For all $p \in G$, $LM(p) \not\in (LM(G - \{p\}))$

If the additional condition,

(ii) LC(P) = 1 for all $P \in G$.

holds, then the minimal Gröbner basis G is monic.

Extraction of a minimal Gröbner basis

In practice: Very easy to remove redundant polynomials of a Gröbner basis: check only the leading monomials.

Extraction: Given a Gröbner basis G, how to compute the a minimal Gröbner basis G' from G?

Let $p \in G$. If $LM(p) \in \langle LM(G - \{p\}) \rangle$ then we can remove p from G: $\langle LM(G - \{p\}) \rangle = \langle LM(G) \rangle \stackrel{\text{by def}}{=} \langle LM(I) \rangle$. OK !

Algorithm of extraction.

Input: A Gröbner basis $G = \{g_1, \ldots, g_s\} \subset \Bbbk[X_1, \ldots, X_n]$ of an ideal I, for a monomial order \prec .

Output: A minimal Gröbner basis $G' = \{g'_1, \ldots, g'_t\}$ of I such that: $t \leq s$ and for $i = 1, \ldots, t$ holds $g'_i \in G$.

1:
$$G' \leftarrow [g_1]$$
; $s' \leftarrow 1$ //s' is the caridnal of G'
2: for $i = 2, ..., s$ do
3: $j \leftarrow 1$; $g' \leftarrow G'[j]$ // given a list $L = [L_1, ..., L_t]$, $L[j]$ means L_j
4: while $(j \le s' \text{ and } LM(g_i) \nmid LM(g') \text{ and } LM(g') \nmid LM(g_i))$ do
 $j \leftarrow j + 1$; $g' \leftarrow G'[j]$
end while
5: if $(j = s' + 1)$ then $G' \leftarrow G'$ cat $[g_i]$; $s' \leftarrow s' + 1$ // "cat" means...
else // ... concatenate. Example: $[1,3,6]$ cat $[4]=[1,3,6,4]$
6: if $(LM(g_i)|LM(g'))$ then $G' \leftarrow (G' - g')$ cat $[g_i]$ // the symbol - ...
end if // ... means "remove". Example $[1,3,6,4] - [3] = [1,6,4]$
end if
end for

7: return G'

Reduced Gröbner bases

Question: Given a polynomial ideal I, is a minimal Gröbner basis of I (for a given monomial order) unique ? No! For example $\{y, x - \frac{b}{a}y\}$, for any b and any $a \neq 0$ are all minimal Gröbner bases for $y \prec_{lex} x$. \rightarrow another refinement of the definition of Gröbner basis:

Definition 7 A Gröbner basis G is reduced if: (ii) $\forall p \in G$, all monomials m occurring in $p, m \notin \langle LM(G - \{p\}) \rangle$. Moreover, it is a reduced monic Gröbner basis if: (ii) LC(p) = 1 for all $p \in G$.

Lemma 2 There exists a reduced Gröbner basis, and a unique monic one.

PROOF: <u>Existence</u>: Modify the initial Gröbner basis (that we can assume to be *minimal*) until each of its element is reduced $(g \in G' \text{ is reduced} \stackrel{\text{def}}{\Leftrightarrow} \text{ no}$ monomials occurring in g are in (LM(G')) ... (end on the blackboard)