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Algorithms for polynomial systems:
elimination & Gröbner bases

多項式系のアルゴリズム: グレブナー基底 & 消去法

Lecture IV: Gröbner bases

May, 20th 2010. Part I: Monomial ideals
May, 27th 2010. Part II: Definition and first properties
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Part I: Monomial ideals Definitions

Definition 1 An ideal I of k[X1, . . . , Xn] is a monomial ideal if it is
generated by some monomials: I = 〈Xα | α ∈ A〉, where A ⊂ Nn is a subset,
non necessarily finite, of multi-integers.

Example: x2 + xy3 ∈ 〈x2, y3〉.

Lemma 1 • A monomial Xβ belongs to a monomial ideal 〈Xα | α ∈ A〉 iff
there exists α ∈ A, such that Xα|Xβ.

• A polynomial f ∈ 〈Xα | α ∈ A〉, iff each monomial occuring in f is in
〈Xα | α ∈ A〉.

Proof:(On the blackboard. . . ) 2

Corollary 1 Let I = 〈Xα(1), . . . , Xα(s)〉, be a finitely generated monomial
ideal. The remainder of the division of a polynomial f ∈ I by the
monomials Xα(1), . . . , Xα(s), is always null (whatever the sequence order
these monomials are taken to perform the division).
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Dickson’s lemma

Corollary 2 Two monomial ideals are equal if and only they contain the
same monomials.

Proof:Exercise 5 of Practice test II. 2

Actually, all monomial ideals are finitely generated.

Theorem 1 (Dickson’s lemma) Let I be a monomial ideal, generated by
an infinite family {Xα | α ∈ A} of monomials. There exists a finite
subfamily A′ ⊂ A such that I = 〈Xα | α ∈ A′〉.

Proof:We must show that there exists some multi-integers
α(1), . . . , α(s) ∈ A such that I = 〈Xα(1), . . . , Xα(s)〉.

By induction on the number of variables n. If n = 1, then the monomial of
minimal degree generates the ideal.
If n > 1 . . . . . . (the end on the blackboard) 2
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New definition of monomial orders

Definition 2 A monomial order ≺ on k[X1, . . . , Xn], is a relation on the
set of monomials Xα, α = (α1, . . . , αn) ∈ Nn, such that:

(i) ≺ is a total order (2 monomials can always be compared: if α 6= β, then
either Xα ≺ Xβ, or Xβ ≺ Xα).

(ii) if Xα ≺ Xβ, then XαXγ ≺ XβXγ , for all γ ∈ Nn.

(iii) ≺ is a well-order: any non-empty subset of monomials has a smallest
element.

(iii’) For all monomials Xα, α ∈ Nn, holds: α < (0, . . . , 0).

Proof:(iii) ⇒ (iii’). The whole set of monomials admit a smallest element,
denoted α0. If α0 ≺ 0, then by Property (ii), 2α0 ≺ α0 is even smaller,
contradicts the minimality of α0.

(iii’) ⇒ (iii) . . . . . . (on the blackboard) 2
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Ideal of leading terms

Definition 3 Let ≺ be a monomial order, and I ⊂ k[X1, . . . , Xn] be a
non-zero ideal. Let

lm≺(I) := {Xα s.t. ∃f ∈ I with lm≺(f) = Xα}

The monomial ideal 〈lm≺(I)〉 is called the ideal of leading terms of I.

! Leading terms? It is possible to define similarly the ideal 〈lt(I)〉. Over a
field k, 〈lm(I)〉 = 〈lt(I)〉 since the leading coefficient lc(f) of the leading
term lt(f) of a polynomial in f ∈ I can be inverted.

!! If I = 〈f1, . . . , fs〉, then 〈lm(f1), . . . , lm(fs)〉 ( 〈lm(I)〉 (in general)

Example: f1 = X3 − 2XY and f2 = X2Y − 2Y 2 + X, ≺ is the grlex
monomial ordering. . . . . .
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Hilbert’s finite basis theorem

Theorem 2 Every ideal I ⊂ k[X1, . . . , Xn] admits a finite basis.

Proof:If I = {0}, there is nothing to do. If {0} ( I . . . (on the blackboard)

Definition 4 A Nœtherian ring is a (commutative) ring R verifying the
ascending chain condition (ACC):

(ACC) All increasing sequences (Ij)j∈N of ideals of R stabilize:

∃n ∈ N such that In = In+1 = In+2 = · · · .

Theorem 3 The ring k[X1, . . . , Xn] is Nœtherian.

Proof:Consider an increasing sequence (Ij)j∈N of ideals and take
I =

∪
j∈N

Ij . This is an ideal, it admits a finite basis by Theorem 1 etc. . . . . .
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Part II: Gröbner bases Definition

Definition 5 For a monomial order ≺ on a polynomial algebra
k[X1, . . . , Xn] and an ideal I, a family {g1, . . . , gs} of polynomials in I is a
Gröbner basis if:

〈lm(g1), . . . , lm(gs)〉 = 〈lm(I)〉. (correction : lm not lt)

Corollary 3 Given a monomial order ≺, every non-zero ideal admits a
Gröbner basis for ≺.
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Normal form (1/3)

Let G = [g1, . . . , gs] be some polynomials, ≺ a monomial order.

For any polynomial f ∈ k[X1, . . . , Xn] let nf≺(f,G) denotes the remainder
of the division of f by the sequence [g1, . . . , gs] with respect to (w.r.t.) the
order ≺ (uniquely determined → Corollary 1).

If G is a Gröbner basis for ≺ of the ideal I := 〈G〉 it generates, then:

For all permutation σ ∈ Sn, we have:

nf≺(f,G) = nf≺(f, [gσ(1), . . . , gσ(n)]). (1)

→ the remainder does not depend on the order of the sequence of
polynomials by which f is divided.

!! But if f = a1g1 + · · ·+ asgs + nf≺(f, G), and if
f = b1gσ(1) + · · ·+ bsgσ(s) + nf≺(f,G), then bi 6= aσ(i), in general.
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Normal form (2/3)

Proof:Let r and r′ be the remainders of the division of f by two differently
ordered sequences of the same set of polynomials {g1, . . . , gs}.

Then r − r′ ∈ I, so if r 6= r′ then
lm(r − r′) ∈ lm(I) ⊂ 〈lm(I)〉 = 〈lm(g1), . . . , lm(gs)〉. By Lemma 1, there
exists i such that lm(gi)|lm(r − r′).

But both r and r′ being remainders, all their terms are not divisible by any
of the lm(gj), which contradicts lm(gi)|lm(r − r′). Hence, r = r′ . 2

Example: G = {x + y, y − z} is a Gröbner basis for x�lexy (to check). The
divisions of xy by [x + y, y − z] and by [y − z, x + y] are not the same (but
the remainder nf(xy, G) = −z2 is, verifying Equation (1)).
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Practical consequence of the Normal Form (3/3)

Theorem 4 (ideal membership) Let I = 〈f1, . . . , fs〉 be an ideal of
k[X1, . . . , Xn], f ∈ k[X1, . . . , Xn], and ≺ any monomial order on
k[X1, . . . , Xn]. Let G be a Gröbner basis of I w.r.t. to ≺. We have:

f ∈ I ⇐⇒ nf≺(f, G) = 0.

Proof: ⇐ trivial. For ⇒, see Exercise 6 of Practice test II. 2

Canonical representation of f mod I: With the notations above, the map:

φG : k[X1, . . . , Xn] −→ k[X1, . . . , Xn]

f 7−→ nf≺(f, G),

is linear (Lect. III, Slide 22). If we define φG(g1g2) := φG(φG(g1)φG(g2)),
then φG is a ring homomorphism.

By Theorem 4, kerφG = I
Lect. II,Slide 11

=⇒ k[X1, . . . , Xn]/I ↪→ k[X1, . . . , Xn].
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Minimal Gröbner basis

Fact: According to the definition, if {g1, . . . , gs} is a Gröbner basis, then any
{g1, . . . , gs} ∪ {gi + gj} is also a Gröbner basis. Of course, gi + gj is useless !

We have gi + gj ∈ 〈g1, . . . , gs〉 = I, so
lm(g1 + g2) ∈ 〈lm(I)〉 = 〈lm(g1), . . . , lm(gs)〉.

So {g1, . . . , gs, gi + gj} is a non-minimal Gröbner basis.

→ Refinement of the definition of Gröbner bases:

Definition 6 A minimal Gröbner basis of a polynomial ideal I (for a given
monomial order) is a Gröbner basis G of I such that:

(i) For all p ∈ G, lm(p) 6∈ 〈lm(G− {p})〉

If the additional condition,

(ii) lc(P ) = 1 for all P ∈ G.

holds, then the minimal Gröbner basis G is monic.
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Extraction of a minimal Gröbner basis

In practice: Very easy to remove redundant polynomials of a Gröbner basis:
check only the leading monomials.

Extraction: Given a Gröbner basis G, how to compute the a minimal
Gröbner basis G′ from G ?

Let p ∈ G. If lm(p) ∈ 〈lm(G− {p})〉 then we can remove p from G:

〈lm(G− {p})〉 = 〈lm(G)〉 by def
= 〈lm(I)〉. OK !

Algorithm of extraction.

# Input: A Gröbner basis G = {g1, . . . , gs} ⊂ k[X1, . . . , Xn] of an ideal I,
for a monomial order ≺.

# Output: A minimal Gröbner basis G′ = {g′1, . . . , g′t} of I such that: t ≤ s

and for i = 1, . . . , t holds g′i ∈ G.

12



1: G′ ← [g1] ; s′ ← 1 //s′ is the caridnal of G′

2: for i = 2, . . . , s do

3: j ← 1 ; g′ ← G′[j] // given a list L = [L1, . . . , Lt], L[j] means Lj

4: while (j ≤ s′ and lm(gi) - lm(g′) and lm(g′) - lm(gi)) do
j ← j + 1 ; g′ ← G′[j]

end while

5: if (j = s′ + 1) then G′ ← G′ cat [gi] ; s′ ← s′ + 1 // “cat” means. . .
else // . . . concatenate. Example: [1,3,6] cat [4]=[1,3,6,4]

6: if (lm(gi)|lm(g′)) then G′ ← (G′ − g′) cat [gi] // the symbol − . . .
end if // . . . means “remove”. Example [1, 3, 6, 4]− [3] = [1, 6, 4]

end if

end for

7: return G′
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Reduced Gröbner bases

Question: Given a polynomial ideal I, is a minimal Gröbner basis of I (for a
given monomial order) unique ? No! For example {y, x− b

ay}, for any b and
any a 6= 0 are all minimal Gröbner bases for y ≺lex x.
→ another refinement of the definition of Gröbner basis:

Definition 7 A Gröbner basis G is reduced if:
(ii) ∀p ∈ G, all monomials m occurring in p, m 6∈ 〈lm(G− {p})〉.
Moreover, it is a reduced monic Gröbner basis if:
(ii) lc(p) = 1 for all p ∈ G.

Lemma 2 There exists a reduced Gröbner basis, and a unique monic one.

Proof:Existence: Modify the initial Gröbner basis (that we can assume to

be minimal) until each of its element is reduced (g ∈ G′ is reduced def⇔ no
monomials occurring in g are in 〈lm(G′)〉) . . . (end on the blackboard) 2
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