MMA 数学特論 I

Algorithms for polynomial systems：

 elimination \＆Gröbner bases多項式系のアルゴリズム：グレブナー基底 \＆消去法

Lecture V：The Buchberger Algorithm

June，3rd 2010．Part I：S－polynomials
Part II：The algorithm
Part III：Syzygies

Xavier Dahan

Part I: S-polynomials

Introduction

Gröbner bases exist \rightarrow Dickson Lemma + Hilbert finite basis (Lect. IV)
Gröbner bases are useful \rightarrow Ideal membership (Theo. 4), and several other applications (next lectures).

Let $F=\left\{f_{1}, f_{2}, \ldots, f_{s}\right\}$ polynomial system in $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, and let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ the ideal it generates.

Problem 1: Is F a Gröbner basis for I (w.r.t. to a monomial order \prec) ?
Problem 2: If not, how to compute a Gröbner basis for I, starting from F ?
\rightarrow Answer: use " S-polynomials" and Buchberger's criterion.
Problem 3: Is it easy to compute a Gröbner bais ? (efficiency)
\rightarrow Answer: Very hard. Many improvements possible \rightarrow still active research topic.

The problem

Let $F=\left\{f_{1}, \ldots, f_{s}\right\}$ be a finite set of polynomials, \prec a monomial order.
If F is not a Gröbner basis for $I=\langle F\rangle$, then:

$$
\exists f \in I, \text { but } \operatorname{LM}(f) \notin\langle\operatorname{LM}(F)\rangle\left(\Leftrightarrow \operatorname{LM}\left(f_{i}\right) \nmid \operatorname{LM}(f), \forall i\right) .
$$

$\rightarrow \operatorname{LM}(F)$ is "too small" for being a Gröbner basis $(\Leftrightarrow\langle\operatorname{LM}(F)\rangle \subsetneq\langle\operatorname{LM}(I)\rangle)$.
\rightarrow (graphic of the example on Slide 5, Lect. IV on the blackboard...)
How to extend $\operatorname{Lm}(F)$? (Try to) find $f \in I$, such that $\operatorname{LM}(f) \notin\langle\operatorname{LM}(F)\rangle$.
$\Longrightarrow f=\sum_{i=1}^{s} h_{i} f_{i}$ such that $\operatorname{LM}(f)=\operatorname{LM}\left(\sum_{i=1}^{s} f_{i} h_{i}\right) \prec \max _{1 \leq i \leq s} \operatorname{LM}\left(f_{i} h_{i}\right)(\star)$
Remember that... $\mathrm{LM}_{\prec}\left(a_{1}+a_{2}\right) \preccurlyeq \max \left\{\operatorname{LM}_{\prec}\left(a_{1}\right), \mathrm{LM}_{\prec}\left(a_{2}\right)\right\}$, with equality if $\operatorname{LM}\left(a_{1}\right) \neq \operatorname{LM}\left(a_{2}\right) \ldots$ and that $\operatorname{LM}(f) \prec \operatorname{LM}\left(f_{i}\right) \Rightarrow \operatorname{LM}\left(f_{i}\right) \nmid \operatorname{LM}(f)$.
Conclusion: There is a term cancellation idenitity in (\star).

S-polynomials

Definition 1 Given two non-zero polynomials $f, g \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, and a monomial order \prec, let $X^{\alpha}=\mathrm{LM}_{\prec}(f)$, and $X^{\beta}=\mathrm{LM}_{\prec}(g)$.
The least common multiple of X^{α} and X^{β} is X^{γ}, where $\gamma=\left(\max \left\{\alpha_{1}, \beta_{1}\right\}, \ldots, \max \left\{\alpha_{n}, \beta_{n}\right\}\right)$, denoted $\underset{\operatorname{LCM}\left(\operatorname{LM}_{\prec}(f), \operatorname{LM}_{\prec}(g)\right)=X^{\gamma} .}{\text {. }}$

The polynomial $S_{\prec}(f, g):=\frac{X^{\gamma}}{\operatorname{LT}_{\prec}(f)} f-\frac{X^{\gamma}}{\operatorname{LT}_{\prec}(g)} g$, is called the S-polynomial of f and g (if it is clear what is \prec, we use simply $S(f, g)$ instead of $S_{\prec}(f, g)$).

Comment: The S-polynomials control the "term cancellation identities":
Proposition 1 Let $T=\sum_{i=1}^{s} c_{i} f_{i}$, with $c_{i} \in \mathbb{k}$, and $\delta=\operatorname{mdeg}_{\prec}\left(f_{i}\right)$ for all i.
If $\operatorname{mdeg}_{\prec}(T) \prec \delta$, then there exists $c_{j, k} \in \mathbb{k}$ such that
$T=\sum_{1 \leq j, k \leq s} c_{j, k} S_{\prec}\left(f_{j}, f_{k}\right)$. Moreover $\operatorname{mdeg}_{\prec}\left(S_{\prec}\left(f_{j}, f_{k}\right)\right) \prec \delta$.
Proof: (On the balckboard...)

Main theorem: Buchberger's criterion

The previous Proposition 1 is important for the following criterion
(Theo. 1). Before, a definition... Remember that the division depends on the sequence in which appear the divisors... Let $G=\left\{g_{1}, \ldots, g_{s}\right\}$ be a polynomial system, and \prec a monomial order.

Definition $2 A$ polynomial f is said to reduce to 0 modulo G, denoted $f \rightarrow_{G} 0$ if there exists (at least) one permutation $\sigma \in \mathfrak{S}_{s}$, such that:

$$
\mathrm{NF}_{\prec}\left(f,\left[g_{\sigma(1)}, g_{\sigma(2)}, \ldots, g_{\sigma(s)}\right]\right)=0 .
$$

$\left(\Longrightarrow f=a_{1} g_{\sigma(1)}+\cdots+a_{s} g_{\sigma(s)}\right.$, with $\operatorname{LM}\left(a_{i} g_{\sigma(i)}\right) \preccurlyeq \operatorname{LM}(f)$ if $\left.a_{i} \neq 0\right)$.
Theorem $1 G$ is a Gröbner basis of $\langle G\rangle$, iff for all pairs $i \neq j$,
$S\left(g_{i}, g_{j}\right) \rightarrow_{G} 0$.
Proof:(On the blackboard...)

Is a polynomial system a Gröbner basis ?

This is the problem 1 of Introduction.
The Buchberger criterion (Theorem 1), implies this algorithm to decide if a polynomial system F is a Gröbner basis or not.
\# Inputs: A polynomial system $F=\left\{f_{1}, \ldots, f_{s}\right\}$. A monomial order \prec.
\# Output: true if F is a Gröbner basis for $\langle F\rangle$, false else.
1: for $p, q \in F, p \neq q$ do
2: if $\mathrm{NF}_{\prec}\left(S_{\prec}(p, q), F\right) \neq 0$ then return false ; end if
3: end for
4: return true
Remark: It is just to show the power of S-polynomials. Else, it is very inefficient in practice, and not very useful.

Part II: The Algorithm

Version 1

Version 1: very naive and slow.
\# Inputs: Non-zero polynomial system $F=\left\{f_{1}, \ldots, f_{s}\right\}$. A monomial order \prec.
\# Output: A Gröbner basis $G=\left\{g_{1}, \ldots, g_{t}\right\}$ for $\langle F\rangle$, w.r.t. \prec.
1: $\quad G \leftarrow F$
2: $\quad \operatorname{do}\left\{G^{\prime} \leftarrow G\right.$
3: for $p, q \in G^{\prime}, p \neq q$ do
4: $\quad S \leftarrow \mathrm{NF}\left(S(p, q), G^{\prime}\right) \quad / /$ computed for any sequence order of G^{\prime}
5: \quad if $S \neq 0$ then $G \leftarrow G \cup\{S\}$; end if
6: end for
7: \} until $\left(G=G^{\prime}\right) \quad / /$ repeat from Step 2
8: return G

Correctness - Termination

Correctness: Claim 1: we always have $F \subset G \subset I$ (proof on the blackboard...)

So, if $\langle F\rangle=I$, then $\langle G\rangle=I$.
Claim 2: When $G=G^{\prime}$ (\Leftrightarrow exit the do/until loop \Leftrightarrow end of algorithm), we have $S=\operatorname{NF}\left(S(p, q), G^{\prime}\right)=0$ for all $p \neq q$ in G. By Buchberger's criterion (Theo. 1), G is a Gröbner basis.

Termination: If $\operatorname{Lm}\left(G^{\prime}\right)=\operatorname{LM}(G)$ then $G=G^{\prime}$.
We have $\left\langle\operatorname{LM}\left(G^{\prime}\right)\right\rangle \subset\langle\operatorname{LM}(G)\rangle$, so the sequence $\left\{\operatorname{LM}\left(G^{\prime}\right)\right\}$ verifies the "ascending chain condition" (Definition 4, Lect. IV), in $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$. Because it is Notherian (Lect. IV, Theo. 3), after a finite number of steps, we have $\operatorname{Lm}(G)=\operatorname{Lm}\left(G^{\prime}\right)$.

Efficiency: detect useless S-polynomial

! Computing a division (or normal form) can be slow: the size of the numbers can grow a lot.
!! If $S(p, q)$ reduces to 0 modulo G, then nothing happens in the algorithm !
\rightarrow computing the division of $S(p, q)$ that gives a 0 remainder is useless .
\Rightarrow Need to decrease as much as possible the number of divisions of S-polynomials computed at Step 4 of the Algo. version 1 (Slide 7)

Unnecessary pairs (1): Since $S(p, q)=-S(q, p)$: pair (p, q) already tested \Rightarrow need not consider the pair (q, p) (see definition of set B at Step 1 , next slide).

Unnecessary pairs (2): If $S(p, q) \rightarrow G_{G^{\prime}} 0$, then $S(p, q) \rightarrow_{G^{\prime} \cup\{S(a, b)\}} 0$ for any S-polynomial of $a, b \in G^{\prime}$.
\rightarrow Hence, the pair (p, q) needs not to be kept in the set B of all indices of pairs to be tested (see Step 10, next slide).

Buchberger algorithm: Version 2

\# Inputs: A polynomial system $F=\left\{f_{1}, \ldots, f_{s}\right\}$
\# Output: A Gröbner basis $G=\left\{g_{1}, \ldots, g_{t}\right\}$ for $I=\langle F\rangle$.
1: $\quad G \leftarrow F ; t \leftarrow s$

$$
B \leftarrow\{(i, j), 1 \leq i<j \leq s\} \quad / / \text { indices of pairs } f_{i}, f_{j} \text { to be tested }
$$

2: while $B \neq \emptyset$ do
3: \quad for $(i, j) \in B$ do
4: $\quad S \leftarrow \operatorname{NF}\left(S\left(f_{j}, f_{i}\right), G\right)$
6: if $S \neq 0$ then
// the S-pol. has not a 0 remainder
7: $\quad t \leftarrow t+1 ; f_{t} \leftarrow S$
8: $\quad G \leftarrow G \cup\left\{f_{t}\right\} \quad / /$ then we add this remainder to G...
9: $\quad B \leftarrow B \cup\{(i, t), 1 \leq i \leq t-1\} \quad / /$ and the new indices.
10: else $B \leftarrow B-\{(i, j)\}$; end if // else the pair of index $i, j \ldots$
11: end for ; end while ... will allways reduced to 0
12: return G

Another criterion to detect useless pairs

This Proposition 2 permits to detect some pairs of polynomials p, q such that $S(p, q)$ will reduce to 0 modulo G.
\rightarrow permits to avoid useless computations (see Slide 14).
Proposition 2 Let G be finite set of polynomials. For a pair $f, g \in G$ and a monomial order \prec, if $\operatorname{LCM}\left(\mathrm{LM}_{\prec}(f), \mathrm{LM}_{\prec}(g)\right)=\mathrm{LM}_{\prec}(f) \mathrm{LM}_{\prec}(g)$, then
$S_{\prec}(f, g) \rightarrow_{G} 0$.
Proof: (On the blackboard...)
Application: This criterion is easy to check. (comparing to do a division).
Buchberger: Version 2.1
\# Inputs: A polynomial system $F=\left\{f_{1}, \ldots, f_{s}\right\}$
\# Output: A Gröbner basis $G=\left\{g_{1}, \ldots, g_{t}\right\}$ for $I=\langle F\rangle$.

1: $\quad G \leftarrow F ; t \leftarrow s$

$$
B \leftarrow\{(i, j), 1 \leq i<j \leq s\} \quad / / \text { indices of pairs } f_{i}, f_{j} \text { to be tested }
$$

2: while $B \neq \emptyset$ do
3: \quad for $(i, j) \in B$ do
3': if $\operatorname{LCM}\left(\operatorname{LM}\left(f_{i}\right), \operatorname{LM}\left(f_{j}\right)\right) \neq \operatorname{LM}\left(f_{i}\right) \operatorname{LM}\left(f_{j}\right)$ then
4: $\quad S \leftarrow \operatorname{NF}\left(S\left(f_{j}, f_{i}\right), G\right)$
6: \quad if $S \neq 0$ then
// the S-pol. has not a 0 remainder $t \leftarrow t+1 ; f_{t} \leftarrow S$ $G \leftarrow G \cup\left\{f_{t}\right\} \quad / /$ then we add this remainder to $G \ldots$ $B \leftarrow B \cup\{(i, t), 1 \leq i \leq t-1\} \quad / /$ and the the new indices else $B \leftarrow B-\{(i, j)\}$; end if // else the pair of index $i, j \ldots$ end if
11: end for ; end while
... will allways reduced to 0
12: return G

Part III: Syzygies

Module over a ring

Let R be a commutative ring with 1_{R} for unit element, with addition + and multiplication \cdot.

An abelian group $(M,+)$ is an R-module if, there is a map:
$R \times M \rightarrow M,(r, m) \mapsto r m$, such that:

- $1_{R} m=m$
- $\left(r \cdot r^{\prime}\right) m=r\left(r^{\prime} m\right)=r\left(r^{\prime} m\right)$
- $\left(r+r^{\prime}\right) m=r m+r^{\prime} m$
- $r\left(m+m^{\prime}\right)=r m+r m^{\prime}$

Facts: If R is a field then R-modules are the vector spaces over R.
If R is not a field, then a module M has no base in general.
An R-module M is finitely generated if there exists some elements m_{1}, \ldots, m_{s} in M such that $\forall m \in M, \exists r_{1}, \ldots, r_{s}$ elements in R with: $m=r_{1} m 1+\cdots+r_{s} m_{s}$.

Examples: Let $I \subset R$ be an ideal. The quotient $\operatorname{ring} R / I$ is an R-module...

Syzygy (1/3)

Given an R-module M, the first syzygy module or the syzygies of M on a set of generators $\left(m_{1}, \ldots, m_{s}\right)$ is the kernel the following presentation of M :

$$
\begin{array}{rcl}
R^{s} & \xrightarrow{\times\left(m_{1}, \ldots, m_{s}\right)} & M \rightarrow 0 \\
\left(r_{1}, \ldots, r_{s}\right) & \longmapsto & r_{1} m_{1}+\cdots+r_{s} m_{s}
\end{array}
$$

then $\operatorname{Syz}\left(m_{1}, \ldots, m_{s}\right):=\left\{\left(r_{1}, \ldots, r_{s}\right) \in R^{s} \mid \sum_{i} a_{i} m_{i}=0\right\}$, so that $M \simeq R^{s} / \operatorname{Syz}\left(m_{1}, \ldots, m_{s}\right)$.

Definition 3 Let $F=\left(f_{1}, \ldots, f_{s}\right)$ a family of s polynomials. We simply denoted by $\operatorname{Syz}(F)$ the syzygies on the leading terms of F :
$\operatorname{Syz}\left(\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{s}\right)\right):=\left\{\left(h_{1}, \ldots, h_{s}\right) \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]^{s} \mid \sum_{i} h_{i} \operatorname{LT}\left(f_{i}\right)=0\right\}$.

Syzygy (2/3)

Homogeneous syzygy in $\operatorname{Syz}(F)$ of (multi)degree $\alpha \in \mathbb{N}^{n}$:

$$
\left(c_{1} X^{\alpha(1)}, \ldots, c_{s} X^{\alpha(s)}\right), \text { where } c_{i} \neq 0 \Rightarrow X^{\alpha(i)} \operatorname{LM}\left(f_{i}\right)=X^{\alpha}
$$

Lemma 1 Every syzygy of $\operatorname{Syz}(F)$ can be written uniquely as a linear combination over \mathbb{k} of homogeneous syzygies.

Proof: (On the blackboard...)
Proposition 3 Let $F=\left(f_{1}, \ldots, f_{s}\right)$ be a family of polynomials, and $\operatorname{Syz}(F)$ be the syzygy module on the leading terms of F. For $1 \leq i<j \leq s$, consider the pair f_{i}, f_{j} of F, and let $X^{\gamma}:=\operatorname{LCm}\left(\operatorname{LM}\left(f_{i}\right), \operatorname{LM}\left(f_{j}\right)\right)$. Define $\mathbf{e}_{1}=(1,0, \ldots, 0), \mathbf{e}_{2}=(0,1,0, \ldots), \ldots, \mathbf{e}_{r}=(\ldots, 0,1)$ and

$$
S_{i j}:=\frac{X^{\gamma}}{\operatorname{LT}\left(f_{i}\right)} \mathbf{e}_{i}-\frac{X^{\gamma}}{\operatorname{LT}\left(f_{j}\right)} \mathbf{e}_{j} \in\left(\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]\right)^{r}
$$

The syzygies $\left\{S_{i j}\right\}_{1 \leq i, j \leq s}$ generate $\operatorname{Syz}(F)$ as $a \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$-module.

Syzygy (3/3)

Proof:First we must check that $S_{i j}$ are effectively syzygies on the leading terms of F (easy).

Next, we must show that each syzygy $S \in S y z(F)$ can be written:

$$
S=\sum_{i<j} p_{i j} S_{i j}, \quad p_{i j} \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]
$$

By Lemma 1 of the previous slide, we can assume that S is homogeneous of (multi)degree α. A syzygy $S \in S y z(F)$ must have at least two non-zero components, say $c_{i} X^{\alpha(i)}$ and $c_{j} X^{\alpha(j)}$ with $i<j$. By definition, we have $X^{\alpha(i)} \operatorname{LM}\left(f_{i}\right)=X^{\alpha(j)} \operatorname{LM}\left(f_{j}\right)=X^{\alpha}$, so $X^{\gamma} \mid X^{\alpha}$.

Claim: $S-c_{i} \operatorname{LC}\left(f_{i}\right) X^{\alpha-\gamma} S_{i j}$ has its i-th component equal to zero, so has more zero components than S. By repeating this, we obtain that S is a $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$-linear combination of the $S_{i j}$, as required.

The syzygy criterion

We have another refinement of the Buchberger criterion that precises Theorem 1.

Theorem 2 Let $G=\left\{g_{1}, \ldots, g_{s}\right\}$ be a family of polynomials, and $\operatorname{Syz}(G)$ the Syzygy module on the leading terms of G. Let \mathcal{S} be a homogeneous basis of $\operatorname{Syz}(G)$. We have:
G is a Gröbner basis iff for all $S \in \mathcal{S}, S \cdot G=\sum_{i=1}^{s} h_{i} g_{i} \rightarrow_{G} 0$.
Proof:(On the blackboard...)
Remark: If we choose $\mathcal{S}=\left\{S_{i j}, i<j\right\}$, as indicated in Proposition 3, then $S_{i j} \cdot G=S\left(g_{i}, g_{j}\right)$. Hence, Theorem 1 is a special case of the above one. Practically ? The advantage of using this criterion is the possiblity to take a smaller basis for $\operatorname{Syz}(G)$ than the $\left\{S_{i j}\right\}$.
\rightarrow then we can avoid more useless pairs than the criterion of Proposition 2.

Choosing a smaller basis

1) Start form $\left\{S_{i j}, i<j\right\}$ for a basis of $\operatorname{Syz}(G)$.
2) Suppose we have constructed a (smaller basis) $\mathcal{S} \subset \operatorname{Syz}(G)$.
3) If $\operatorname{LM}\left(g_{\ell}\right) \mid \operatorname{LCM}\left(\operatorname{LM}\left(g_{i}\right), \operatorname{LM}\left(g_{j}\right)\right)$ and $S_{i \ell}, S_{j \ell} \in \mathcal{S}$, then $\mathcal{S}-\left\{S_{i j}\right\}$ is a (smaller) basis of Syz (G).

Proof:Suppose $i<j<\ell$, and let $X^{\gamma_{i \ell}}:=\operatorname{LCM}\left(\operatorname{LM}\left(g_{i}\right), \operatorname{LM}\left(g_{\ell}\right)\right)$ (and also let $X^{\gamma_{j \ell}}, X^{\gamma_{i j}}$ for the corresponding LCM). By assumption, both $X^{\gamma_{j \ell}}$ and $X^{\gamma_{i \ell}}$ divides $X^{\gamma_{i j}}$.

$$
S_{i j}=\frac{X^{\gamma_{i j}}}{X^{\gamma_{i \ell}}} S_{i \ell}-\frac{X^{\gamma_{i j}}}{X^{\gamma_{j \ell}}} S_{j \ell}
$$

so $S_{i j}$ is generated by $S_{i \ell}$ and $S_{j \ell}$ and can be removed from \mathcal{S}.
Aim: We want to reduce the number of pairs to test. Let $[i, j]=(i, j)$ if $i<j$ and $[i, j]=(j, i)$ if $i>j$. Let $B \subset\{(i, j), 1 \leq i<j \leq s\}$, such that $\left\{S_{a b},(a, b) \in B\right\}$ generate $\operatorname{Syz}(F)$.

Buchberger algorithm: Version 3

Define the boolean $\operatorname{Criterion}\left(f_{i}, f_{j}, B\right)$ as true if $[i, \ell]$ and $[j, \ell]$ are not in B, and if $\operatorname{LM}\left(f_{\ell}\right) \mid \operatorname{LCM}\left(\operatorname{LM}\left(f_{i}\right), \operatorname{LM}\left(f_{j}\right)\right)$ and false else.

$$
\begin{aligned}
\text { 1: } & G \leftarrow F ; B \leftarrow\{(i, j), 1 \leq i<j \leq s\} ; t \leftarrow s \\
2: & \text { while } B \neq \emptyset \text { do } \\
3: & \text { for }(i, j) \in B \text { do } \\
4: & \text { if } \operatorname{LCM}\left(\operatorname{LM}\left(f_{i}\right), \operatorname{LM}\left(f_{j}\right)\right) \neq \operatorname{LM}\left(f_{i}\right) \operatorname{LM}\left(f_{j}\right) \text { and ! Criterion }\left(f_{i}, f_{j}, B\right) \text { then } \\
5: & S \leftarrow \operatorname{NF}\left(S\left(f_{j}, f_{i}\right), G\right) \\
6: & \text { if } S \neq 0 \text { then } \\
7: & t \leftarrow t+1 ; f_{t} \leftarrow S \\
8: & G \leftarrow G \cup\left\{f_{t}\right\} \\
9: & B \leftarrow B \cup\{(i, t), 1 \leq i \leq t-1\} \\
10: & \text { else } B \leftarrow B-\{(i, j)\} ; \text { end if } \\
11: & \text { end if } \\
12: & \text { end for ; end while } ; \text { return } G
\end{aligned}
$$

Conclusion: Remarks about efficiency

...still a lot of research to compute Gröbner bases quickly...
(Buchberger, 1985), (Gebauer-Möller, 1988) \rightarrow "Normal strategy" for choosing pairs to reduce and good reductors (will give a zero quickly).
(Giovanni, Mora et al., 1991) "Sugar" and "Double sugar" strategy, refinement and heuristics.
J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F_{4}).
J. Pure Appl. Algebra, pp:75-83, (1999, updated 2002).

Gröbner bases for grevlex are usually faster to compute
(Bayer-Stillman, 1987) \rightarrow monomial order conversion algorithm (to compute a lex GB, first compute a grevlex one and convert it into a lex).
(Faugère, Gianni et al., 1993), FGLM, change of order by linear algebra, (Collart, Kalkbrener et al., 1993 97), "Gröbner walk" on different orders.

