MMA 数学特論 I

Algorithms for polynomial systems: elimination & Gröbner bases 多項式系のアルゴリズム: グレブナー基底 & 消去法

Lecture V: The Buchberger Algorithm

June, 3rd 2010. Part I: S-polynomials Part II: The algorithm Part III: Syzygies

Xavier Dahan

Part I: S-polynomials

Introduction

Gröbner bases **exist** \rightarrow Dickson Lemma + Hilbert finite basis (Lect. IV) Gröbner bases are **useful** \rightarrow Ideal membership (Theo. 4), and several other applications (next lectures).

Let $F = \{f_1, f_2, \dots, f_s\}$ polynomial system in $\Bbbk[X_1, \dots, X_n]$, and let $I = \langle f_1, \dots, f_s \rangle$ the ideal it generates.

Problem 1: Is F a Gröbner basis for I (w.r.t. to a monomial order \prec)?

Problem 2: If not, how to compute a Gröbner basis for I, starting from F? \rightarrow Answer: use "S-polynomials" and Buchberger's criterion.

Problem 3: Is it easy to compute a Gröbner bais ? (efficiency)

 \rightarrow Answer: Very hard. Many improvements possible \rightarrow still active research topic.

The problem

Let $F = \{f_1, \ldots, f_s\}$ be a finite set of polynomials, \prec a monomial order. If F is not a Gröbner basis for $I = \langle F \rangle$, then:

 $\exists f \in I, \text{ but } \operatorname{LM}(f) \notin \langle \operatorname{LM}(F) \rangle \iff \operatorname{LM}(f_i) \nmid \operatorname{LM}(f), \forall i).$

 $\rightarrow \text{LM}(F)$ is "too small" for being a Gröbner basis ($\Leftrightarrow \langle \text{LM}(F) \rangle \subsetneq \langle \text{LM}(I) \rangle$). \rightarrow (graphic of the example on Slide 5, Lect. IV on the blackboard...)

How to extend LM(F)? (Try to) find $f \in I$, such that $LM(f) \notin (LM(F))$.

$$\implies f = \sum_{i=1}^{s} h_i f_i \text{ such that } \operatorname{LM}(f) = \operatorname{LM}\left(\sum_{i=1}^{s} f_i h_i\right) \prec \max_{1 \le i \le s} \operatorname{LM}(f_i h_i) (\star)$$

Remember that... $LM_{\prec}(a_1 + a_2) \preccurlyeq \max\{LM_{\prec}(a_1), LM_{\prec}(a_2)\}$, with equality if $LM(a_1) \neq LM(a_2)$... and that $LM(f) \prec LM(f_i) \Rightarrow LM(f_i) \nmid LM(f)$.

Conclusion: There is a term cancellation idenitity in (\star) .

S-polynomials

Definition 1 Given two non-zero polynomials $f, g \in \Bbbk[X_1, \ldots, X_n]$, and a monomial order \prec , let $X^{\alpha} = LM_{\prec}(f)$, and $X^{\beta} = LM_{\prec}(g)$.

The least common multiple of X^{α} and X^{β} is X^{γ} , where $\gamma = (\max\{\alpha_1, \beta_1\}, \dots, \max\{\alpha_n, \beta_n\}), denoted \ \operatorname{LCM}(\operatorname{LM}_{\prec}(f), \operatorname{LM}_{\prec}(g)) = X^{\gamma}.$

The polynomial $S_{\prec}(f,g) := \frac{X^{\gamma}}{\mathrm{LT}_{\prec}(f)}f - \frac{X^{\gamma}}{\mathrm{LT}_{\prec}(g)}g$, is called the S-polynomial of f and g (if it is clear what is \prec , we use simply S(f,g) instead of $S_{\prec}(f,g)$).

Comment: The S-polynomials control the "term cancellation identities":

Proposition 1 Let $T = \sum_{i=1}^{s} c_i f_i$, with $c_i \in \mathbb{k}$, and $\delta = \mathsf{mdeg}_{\prec}(f_i)$ for all *i*. If $\mathsf{mdeg}_{\prec}(T) \prec \delta$, then there exists $c_{j,k} \in \mathbb{k}$ such that

$$T = \sum_{1 \le j,k \le s} c_{j,k} S_{\prec}(f_j, f_k) \ . \ Moreover \ \mathsf{mdeg}_{\prec}(S_{\prec}(f_j, f_k)) \prec \delta.$$

PROOF: (On the balckboard...)

Main theorem: Buchberger's criterion

The previous Proposition 1 is important for the following criterion (Theo. 1). Before, a definition...Remember that the division depends on the sequence in which appear the divisors...Let $G = \{g_1, \ldots, g_s\}$ be a polynomial system, and \prec a monomial order.

Definition 2 A polynomial f is said to reduce to 0 modulo G, denoted $f \rightarrow_G 0$ if there exists (at least) one permutation $\sigma \in \mathfrak{S}_s$, such that:

$$\operatorname{NF}_{\prec}(f, [g_{\sigma(1)}, g_{\sigma(2)}, \dots, g_{\sigma(s)}]) = 0.$$

 $(\Longrightarrow f = a_1 g_{\sigma(1)} + \dots + a_s g_{\sigma(s)}, \text{ with } \operatorname{LM}(a_i g_{\sigma(i)}) \preccurlyeq \operatorname{LM}(f) \text{ if } a_i \neq 0).$ **Theorem 1** *G* is a Gröbner basis of $\langle G \rangle$, iff for all pairs $i \neq j$, $S(g_i, g_j) \rightarrow_G 0$.

PROOF: (On the blackboard...)

Is a polynomial system a Gröbner basis ?

This is the problem 1 of Introduction.

The Buchberger criterion (Theorem 1), implies this algorithm to decide if a polynomial system F is a Gröbner basis or not.

- # Inputs: A polynomial system $F = \{f_1, \ldots, f_s\}$. A monomial order \prec . # Output: true if F is a Gröbner basis for $\langle F \rangle$, false else.
 - $1:\quad \text{for }p,q\in F,p\neq q \text{ do}$
 - 2: if $NF_{\prec}(S_{\prec}(p,q),F) \neq 0$ then return false; end if
 - 3: end for
 - 4: return true

Remark: It is just to show the power of S-polynomials. Else, it is very inefficient in practice, and not very useful.

Part II: The Algorithm

Version 1

Version 1: very naive and slow.

- # Inputs: Non-zero polynomial system $F = \{f_1, \ldots, f_s\}$. A monomial order \prec .
- # Output: A Gröbner basis $G = \{g_1, \ldots, g_t\}$ for $\langle F \rangle$, w.r.t. \prec .

1:
$$G \leftarrow F$$

2: $do\{ G' \leftarrow G$
3: for $p, q \in G', p \neq q$ do
4: $S \leftarrow NF(S(p,q),G')$ // computed for any sequence order of G'
5: if $S \neq 0$ then $G \leftarrow G \cup \{S\}$; end if
6: end for
7: $\}$ until $(G = G')$ // repeat from Step 2
8: return G

Correctness - Termination

Correctness: Claim 1: we always have $F \subset G \subset I$ (proof on the blackboard...)

So, if $\langle F \rangle = I$, then $\langle G \rangle = I$.

Claim 2: When G = G' (\Leftrightarrow exit the do/until loop \Leftrightarrow end of algorithm), we have S = NF(S(p,q), G') = 0 for all $p \neq q$ in G. By Buchberger's criterion (Theo. 1), G is a Gröbner basis.

Termination: If LM(G') = LM(G) then G = G'. We have $\langle LM(G') \rangle \subset \langle LM(G) \rangle$, so the sequence $\{LM(G')\}$ verifies the "ascending chain condition" (Definition 4, Lect. IV), in $k[X_1, \ldots, X_n]$. Because it is Noetherian (Lect. IV, Theo. 3), after a finite number of steps, we have LM(G) = LM(G').

Efficiency: detect useless S-polynomial

! Computing a division (or normal form) can be slow: the size of the numbers can grow a lot.

!! If S(p,q) reduces to 0 modulo G, then nothing happens in the algorithm !

 \rightarrow computing the division of S(p,q) that gives a 0 remainder is useless.

 \Rightarrow Need to decrease as much as possible the number of divisions of S-polynomials computed at Step 4 of the Algo. version 1 (Slide 7)

Unnecessary pairs (1): Since S(p,q) = -S(q,p): pair (p,q) already tested \Rightarrow need not consider the pair (q,p) (see definition of set *B* at Step 1, next slide).

Unnecessary pairs (2): If $S(p,q) \rightarrow_{G'} 0$, then $S(p,q) \rightarrow_{G' \cup \{S(a,b)\}} 0$ for any S-polynomial of $a, b \in G'$.

 \rightarrow Hence, the pair (p,q) needs not to be kept in the set B of all indices of pairs to be tested (see Step 10, next slide).

Buchberger algorithm: Version 2

Inputs: A polynomial system $F = \{f_1, \ldots, f_s\}$ # Output: A Gröbner basis $G = \{g_1, \ldots, g_t\}$ for $I = \langle F \rangle$.

1:
$$G \leftarrow F; t \leftarrow s$$

 $B \leftarrow \{(i, j), 1 \le i < j \le s\}$ // indices of pairs f_i, f_j to be tested
2: while $B \ne \emptyset$ do
3: for $(i, j) \in B$ do
4: $S \leftarrow \operatorname{NF}(S(f_j, f_i), G)$
6: if $S \ne 0$ then // the S-pol. has not a 0 remainder
7: $t \leftarrow t+1; f_t \leftarrow S$
8: $G \leftarrow G \cup \{f_t\}$ // then we add this remainder to $G...$
9: $B \leftarrow B \cup \{(i, t), 1 \le i \le t - 1\}$ // and the new indices.
10: else $B \leftarrow B - \{(i, j)\}$; end if // else the pair of index $i, j...$
11: end for ; end while ... will allways reduced to 0
12: return G

Another criterion to detect useless pairs

This Proposition 2 permits to detect some pairs of polynomials p, q such that S(p,q) will reduce to 0 modulo G.

 \rightarrow permits to avoid useless computations (see Slide 14).

Proposition 2 Let G be finite set of polynomials. For a pair $f, g \in G$ and a monomial order \prec , if $LCM(LM_{\prec}(f), LM_{\prec}(g)) = LM_{\prec}(f)LM_{\prec}(g)$, then $S_{\prec}(f,g) \rightarrow_G 0$.

PROOF: (On the blackboard...)

Application: This criterion is easy to check. (comparing to do a division).

Buchberger: Version 2.1

Inputs: A polynomial system $F = \{f_1, \ldots, f_s\}$

Output: A Gröbner basis $G = \{g_1, \ldots, g_t\}$ for $I = \langle F \rangle$.

1:	$G \leftarrow F; t \leftarrow s$	
	$B \leftarrow \{(i,j) , \ 1 \leq i < j \leq s\}$	// indices of pairs f_i, f_j to be tested
2:	while $B eq \emptyset$ do	
3:	for $(i,j)\in B$ do	
3':	if $\operatorname{LCM}(\operatorname{LM}(f_i),\operatorname{LM}(f_j)) eq \operatorname{LM}(f_i)\operatorname{LM}(f_j)$ then	
4:	$S \leftarrow \operatorname{NF}(S(f_j, f_i), G)$	
6:	if $S eq 0$ then	// the S-pol. has not a 0 remainder
7:	$t \leftarrow t+1 \; ; \; f_t \leftarrow S$	
8:	$G \leftarrow G \cup \{f_t\}$	// then we add this remainder to G
9:	$B \leftarrow B \cup \{(i,t) , \ 1 \leq i$	$\leq t-1$ // and the the new indices
10:	else $B \leftarrow B - \{(i,j)\}$; e	end if // else the pair of index i, j
	end if	
11:	end for ; end while	\ldots will allways reduced to 0
1.0		

12: return G

Part III: Syzygies

Let R be a commutative ring with 1_R for unit element, with addition + and multiplication \cdot .

An abelian group (M, +) is an *R***-module** if, there is a map: $R \times M \to M$, $(r, m) \mapsto rm$, such that:

•
$$1_R m = m$$

• $(r \cdot r')m = r(r'm) = r(r'm)$

•
$$(r+r')m = rm + r'm$$
 • $r(m+m') = rm + rm'$

Facts: If R is a field then R-modules are the vector spaces over R. If R is not a field, then a module M has no base in general. An R-module M is finitely generated if there exists some elements m_1, \ldots, m_s in M such that $\forall m \in M, \exists r_1, \ldots, r_s$ elements in R with: $m = r_1 m 1 + \cdots + r_s m_s$.

Examples: Let $I \subset R$ be an ideal. The quotient ring R/I is an *R*-module...

Syzygy (1/3)

Given an *R*-module M, the *first syzygy module* or the *syzygies* of M on a set of generators (m_1, \ldots, m_s) is the kernel the following presentation of M:

$$R^{s} \xrightarrow{\times (m_{1}, \dots, m_{s})} M \to 0,$$

(r_{1}, \dots, r_{s}) \longmapsto r_{1}m_{1} + \dots + r_{s}m_{s}.

then $Syz(m_1, ..., m_s) := \{(r_1, ..., r_s) \in R^s \mid \sum_i a_i m_i = 0\}$, so that $M \simeq R^s / Syz(m_1, ..., m_s).$

Definition 3 Let $F = (f_1, \ldots, f_s)$ a family of s polynomials. We simply denoted by Syz(F) the syzygies on the leading terms of F:

$$Syz(LT(f_1), \ldots, LT(f_s)) := \{(h_1, \ldots, h_s) \in \mathbb{k}[X_1, \ldots, X_n]^s \mid \sum_i h_i LT(f_i) = 0\}.$$

Syzygy (2/3)

Homogeneous syzygy in Syz(F) of (multi)degree $\alpha \in \mathbb{N}^n$:

 $(c_1 X^{\alpha(1)}, \ldots, c_s X^{\alpha(s)}), \text{ where } c_i \neq 0 \Rightarrow X^{\alpha(i)} \operatorname{LM}(f_i) = X^{\alpha}.$

Lemma 1 Every syzygy of Syz(F) can be written uniquely as a linear combination over \Bbbk of homogeneous syzygies.

PROOF: (On the blackboard...)

Proposition 3 Let $F = (f_1, \ldots, f_s)$ be a family of polynomials, and Syz(F)be the syzygy module on the leading terms of F. For $1 \le i < j \le s$, consider the pair f_i, f_j of F, and let $X^{\gamma} := \text{LCM}(\text{LM}(f_i), \text{LM}(f_j))$. Define $\mathbf{e}_1 = (1, 0, \ldots, 0)$, $\mathbf{e}_2 = (0, 1, 0, \ldots)$, \ldots , $\mathbf{e}_r = (\ldots, 0, 1)$ and

$$S_{ij} := \frac{X^{\gamma}}{\mathrm{LT}(f_i)} \mathbf{e}_i - \frac{X^{\gamma}}{\mathrm{LT}(f_j)} \mathbf{e}_j \in (\mathbb{k}[X_1, \dots, X_n])^r,$$

The syzygies $\{S_{ij}\}_{1 \leq i,j \leq s}$ generate Syz(F) as a $\Bbbk[X_1, \ldots, X_n]$ -module.

Syzygy (3/3)

PROOF: First we must check that S_{ij} are effectively syzygies on the leading terms of F (easy).

Next, we must show that each syzygy $S \in Syz(F)$ can be written:

$$S = \sum_{i < j} p_{ij} S_{ij}, \quad p_{ij} \in \mathbb{k}[X_1, \dots, X_n]$$

By Lemma 1 of the previous slide, we can assume that S is homogeneous of (multi)degree α . A syzygy $S \in Syz(F)$ must have at least two non-zero components, say $c_i X^{\alpha(i)}$ and $c_j X^{\alpha(j)}$ with i < j. By definition, we have $X^{\alpha(i)} \operatorname{LM}(f_i) = X^{\alpha(j)} \operatorname{LM}(f_j) = X^{\alpha}$, so $X^{\gamma} | X^{\alpha}$.

Claim: $S - c_i LC(f_i) X^{\alpha - \gamma} S_{ij}$ has its *i*-th component equal to zero, so has more zero components than S. By repeating this, we obtain that S is a $k[X_1, \ldots, X_n]$ -linear combination of the S_{ij} , as required.

The syzygy criterion

We have another refinement of the Buchberger criterion that precises Theorem 1.

Theorem 2 Let $G = \{g_1, \ldots, g_s\}$ be a family of polynomials, and Syz(G)the Syzygy module on the leading terms of G. Let S be a homogeneous basis of Syz(G). We have:

G is a Gröbner basis iff for all $S \in S$, $S \cdot G = \sum_{i=1}^{s} h_i g_i \to_G 0$.

PROOF: (On the blackboard...)

Remark: If we choose $S = \{S_{ij}, i < j\}$, as indicated in Proposition 3, then $S_{ij} \cdot G = S(g_i, g_j)$. Hence, Theorem 1 is a special case of the above one.

Practically ? The advantage of using this criterion is the possibility to take a *smaller* basis for Syz(G) than the $\{S_{ij}\}$.

 \rightarrow then we can avoid more useless pairs than the criterion of Proposition 2.

Choosing a smaller basis

- 1) Start form $\{S_{ij}, i < j\}$ for a basis of Syz(G).
- 2) Suppose we have constructed a (smaller basis) $\mathcal{S} \subset Syz(G)$.

3) If $LM(g_{\ell})|LCM(LM(g_i), LM(g_j))$ and $S_{i\ell}, S_{j\ell} \in S$, then $S - \{S_{ij}\}$ is a (smaller) basis of Syz(G).

PROOF: Suppose $i < j < \ell$, and let $X^{\gamma_{i\ell}} := \operatorname{LCM}(\operatorname{LM}(g_i), \operatorname{LM}(g_\ell))$ (and also let $X^{\gamma_{j\ell}}, X^{\gamma_{ij}}$ for the corresponding LCM). By assumption, both $X^{\gamma_{j\ell}}$ and $X^{\gamma_{i\ell}}$ divides $X^{\gamma_{ij}}$.

$$S_{ij} = \frac{X^{\gamma_{ij}}}{X^{\gamma_{i\ell}}} S_{i\ell} - \frac{X^{\gamma_{ij}}}{X^{\gamma_{j\ell}}} S_{j\ell}$$

 \square

so S_{ij} is generated by $S_{i\ell}$ and $S_{j\ell}$ and can be removed from \mathcal{S} .

Aim: We want to reduce the number of *pairs* to test. Let [i, j] = (i, j) if i < j and [i, j] = (j, i) if i > j. Let $B \subset \{(i, j), 1 \le i < j \le s\}$, such that $\{S_{ab}, (a, b) \in B\}$ generate Syz(F).

Buchberger algorithm: Version 3

Define the boolean $Criterion(f_i, f_j, B)$ as true if $[i, \ell]$ and $[j, \ell]$ are not in B, and if $LM(f_\ell)|LCM(LM(f_i), LM(f_j))$ and false else.

1:
$$G \leftarrow F$$
; $B \leftarrow \{(i,j), 1 \le i < j \le s\}$; $t \leftarrow s$
2: while $B \ne \emptyset$ do
3: for $(i,j) \in B$ do
4: if $LCM(LM(f_i), LM(f_j)) \ne LM(f_i)LM(f_j)$ and $!Criterion(f_i, f_j, B)$ then
5: $S \leftarrow NF(S(f_j, f_i), G)$
6: if $S \ne 0$ then
7: $t \leftarrow t+1$; $f_t \leftarrow S$
8: $G \leftarrow G \cup \{f_t\}$
9: $B \leftarrow B \cup \{(i,t), 1 \le i \le t-1\}$
10: else $B \leftarrow B - \{(i,j)\}$; end if
11: end if
12: end for ; end while ; return G

Conclusion: Remarks about efficiency

... still a lot of research to compute Gröbner bases quickly...

(Buchberger, 1985), (Gebauer-Möller, 1988) \rightarrow "Normal strategy" for choosing pairs to reduce and good reductors (will give a zero quickly).

(Giovanni, Mora *et al.*, 1991) "Sugar" and "Double sugar" strategy, refinement and heuristics.

J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F_4) . J. Pure Appl. Algebra, pp:75–83, (1999, updated 2002).

Gröbner bases for grevlex are usually faster to compute (Bayer-Stillman, 1987) \rightarrow monomial order conversion algorithm (to compute a lex GB, first compute a grevlex one and *convert it* into a lex). (Faugère, Gianni *et al.*, 1993), FGLM, change of order by linear algebra, (Collart, Kalkbrener *et al.*, 1993 97), "Gröbner walk" on different orders.