MMA: sūgaku tokuron I. Lecture VI **Resultant and applications** (Part II)

Xavier Dahan, 2010, June 17th & 24th

1 Intersection of 2 curves

R is a commutative ring, that is an integral domain (like $R = \mathbb{Z}$, R = k[X] etc.).

We have seen (Slide 2) that the Sylvester matrix of 2 polynomials A and B in R[X] represents the linear map $(f, g) \mapsto Af + Bg$ (in a relevant basis...). Actually the resultant of A and B is in the *image* of this linear map. Precisely, there is the following proposition:

Proposition 2 There exists $U \in R[X]_{\leq n}$ and $V \in R[X]_{\leq m}$ such that

$$AU + BV = \operatorname{Res}(A, B)$$

Moreover U and V are polynomials in \mathbb{Z} [coefficients of A and coefficients of B].

PROOF: By construction, $Syl(A, B) \in Mat_{n+m}(R)$. Let us extend the scalars from R to R[X], so that $Syl(A, B) \in Mat_{n+m}(R[X])$.

Let us write $Syl(A, B) = (C_1 | C_2 | \cdots | C_{n+m})$, where C_i represents the *i*-th column in $R[X]^{n+m}$ of Syl(A, B).

Recall that the determinant of a matrix *does not* change if we add to a column a linear combination of the others.

Hence we perform this replacement: $C'_{m+n} \leftrightarrow C_1 X^{n+m-1} + C_2 X^{n+m-2} + \cdots + C_{n+m-1} X + C_{n+m}$, to obtain:

$$M = \begin{pmatrix} a_m & a_{m-1} & a_1 & a_0 & & a_m X^{n+m-1} + \dots + a_1 X^n + a_0 X^{n-1} \\ a_m & a_0 & & a_m X^{n+m-2} + \dots + a_0 X^{n-2} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ &$$

We can see that: $C'_{m+n} = {}^t (\underbrace{X^{n-1}A, X^{n-1}A, \dots, XA, A}_{n}, \underbrace{X^{m-1}B, \dots, XB, B}_{m}).$

Moreover, the determinant of M is unchanged equal to det Syl(A, B) = Res(A, B). We compute it by developing along the column C'_{m+n} . Let M_i be the (i, n+m) cofactor matrix of M, obtained by removing the *i*-th line and the m + n-th column of M:

$$\operatorname{\mathsf{Res}}(A,B) = \sum_{\ell=1}^{n} (-1)^{m+n+\ell} X^{m-\ell} A \det M_{\ell} + \sum_{\ell=1}^{m} (-1)^{m+n+\ell} X^{n-\ell} B \det M_{n+\ell}$$

Let $U = \sum_{\ell=1}^{n} (-1)^{m+n+\ell} X^{m-\ell} \det M_{\ell}$ and let $V = \sum_{\ell=1}^{m} (-1)^{m+n+\ell} X^{n-\ell} \det M_{n+\ell}$, so that $\operatorname{Res}(A, B) = AU + BV$. This proves the fist part of the theorem. Next, since X does not appear in each cofactor matrix M_i , we have $\det M_i \in R$ and $\deg(U) < m$ and $\deg(V) < n$, as required.

Finally since det $M_{\ell} \in \mathbb{Z}$ [coefficients of A and B] we also have $U, V \in \mathbb{Z}$ [coefficients of A and B].

We consider two plane curves C_A and C_B defined by polynomials A and B in $\Bbbk[X.Y]$. Let us write $\begin{vmatrix} A &= a_0(X) + a_1(X)Y + \cdots + a_{m-1}(X)Y^{m-1} + a_m(X)Y^m \\ B &= b_0(X) + b_1(X)Y + \cdots + b_n(X)Y^n \end{vmatrix}$. The following proposition 3 gives information about the coordinates of the projection on the X-axis of the intersection points $C_A \cap C_B$. Before, one remark and a lemma:

Remark: $\operatorname{Res}_X(A, B)$ or $\operatorname{Res}_Y(A, B)$? If we see A and B as univariate polynomial in R[Y] with coefficients in $R = \Bbbk[X]$ then the Sylvester matrix is constructed with its entries in $R = \Bbbk[X]$, and the resultant is an element of $R = \Bbbk[X]$. We have eliminated Y, and we write $\operatorname{Res}_Y(A, B) \in \Bbbk[X]$.

If we see A and B as *univariate* polynomials R[X] with coefficients in $R = \Bbbk[Y]$, then the Sylvester matrix has its entries in $R = \Bbbk[Y]$, and the resultant is in $R = \Bbbk[Y]$.

Lemma 5 Let $A, B \in \mathbb{k}[X, Y]$. The polynomials A and B have a common factor in $\mathbb{k}[X, Y]$ if and only if $\operatorname{Res}_Y(A, B) = 0$.

PROOF: Corollary 1 says that A and B have certainly a common factor with coefficients in $\mathbb{k}(X) = \operatorname{Frac}(\mathbb{k}[X])$, if $\operatorname{\mathsf{Res}}_Y(A, B) = 0$. Let $\tilde{D} \in \mathbb{k}(X)$ be a such a factor, and let us write:

$$A = DA_0$$
 $B = DB_0$, with $D, A_0, B_0 \in \mathbb{k}(X)[Y]$.

The theorem of Gauss permits to conclude:

Gauss theorem: Let \mathbb{A} be an unique factorization domain. This means that factorization into prime is possible (like in \mathbb{Z} , $k[X_1, \ldots, X_n]$). Let $\mathbb{K} =$ Frac(\mathbb{A}) be the field of fractions of \mathbb{A} . Assume that $P \in \mathbb{A}[X]$ with deg(P) \geq 2, admits the factorization $P = \tilde{Q}\tilde{R}$ over \mathbb{K} , i.e. $\tilde{Q} \in \mathbb{K}[X]$ and $\tilde{R} \in \mathbb{K}[X]$.

Then P admits a factorization over A; more precisely there exists, $Q \in A[X]$ and $R \in A[X]$ such that P = QR. Moreover R and Q are uniquely determined by \tilde{R} and \tilde{Q} , and have the same degree.

We apply it with $\mathbb{A} = \mathbb{k}[X]$ and $\mathbb{K} = \mathbb{k}(X)$. There exists D, A_0 and B_0 in $\mathbb{k}[X, Y]$ uniquely determined by \tilde{D} , \tilde{A}_0 and \tilde{B}_0 and of the same degree, such that $A = DA_0$ and $B = DB_0$.

The main result concerning the intersection points of the two curves is:

Proposition 3 Let $r(X) = \text{Res}_Y(A, B) \in \mathbb{k}[X]$. Let $x \in \overline{\mathbb{k}}$ be a root of r. Then, one of the two facts is true:

- (*i*) $a_m(x) = 0 = b_n(x)$ or
- (*ii*) $\exists y \in \overline{\Bbbk}$ such that $(x, y) \in \mathcal{C}_A \cap \mathcal{C}_B$.

PROOF: Let $\phi_x : \overline{\mathbb{k}}[X] \to \overline{\mathbb{k}}, \ P \mapsto P(x)$, be the evaluation map at x.

If $\phi_x(a_m) = 0$ and $\phi_x(b_n) = 0$, so that x is a common root of a_m and b_n and we are in case (i); then:

the first column of the matrix $\phi_x(\mathsf{Syl}(A, B))$ is null $\iff \det \phi_x(\mathsf{Syl}(A, B)) = 0$ $\iff \phi_x(\det(\mathsf{Syl}(A, B))) = 0$ $\iff \phi_x(\mathsf{Res}_Y(A, B)) = 0 = r(x)$

If $a_m(x) \neq 0$ or $b_n(x) \neq 0$ (not case (i)) say $a_m(x) \neq 0$, for example. Then by the specialization of the resultant (Proposition 1, second point) we have

$$r(x) = \phi_x(\operatorname{\mathsf{Res}}_Y(A, B)) = \phi_x(a_m)^{m - \deg_Y(\phi_x(A))} \operatorname{\mathsf{Res}}(\phi_x(A), \phi_x(B))$$
$$= a_m(x)^{\ell} \operatorname{\mathsf{Res}}(A(x, Y), B(x, Y)).$$

with $\ell = m - \deg_Y(A(x, Y))$. Because $a_m(x) \neq 0$,

 $\begin{array}{rll} r(x)=0 & \Longleftrightarrow & \mathsf{Res}(A(x,Y),B(x,Y))=0\\ \text{by Lemma 5,} & & \Longleftrightarrow & A(x,Y) \text{ and } B(x,Y) \text{ have a common factor in } \overline{\Bbbk}[Y]\\ & & & \exists \, y\in \overline{\Bbbk} \text{ such that } A(x,y)=0=B(x,y), \end{array}$

which proves that any root x of r not verifying Case (i), verifies Case (ii).

REMARK: Cf Mathematica file "Syl-2.nb" for examples of intersections of 2 plane curves.

2 Vanishing polynomial of an algebraic number

(Cf. Mathematica file "VanishPolyOnAlgNbr.nb").

 \rightarrow Algebraic numbers... review Lecture II !

Problem: Given an algebraic number $\alpha \in \overline{\mathbb{Q}}$, how to find a vanishing polynomial of α ? (i.e. a polynomial $P \in \mathbb{Q}[X]$ such that $P(\alpha) = 0$).

For $\alpha = \sqrt{2}$, then it is $X^2 - 2$. For $\alpha = \sqrt{2} + \sqrt{3}$, then $\alpha^2 = 2 + 2\sqrt{6} + 3$, so $(\alpha^2 - 5)^2 = 24$, and α is a root of $X^4 - 10X^2 + 1$.

What about $\alpha = 2^{2/3} + 2^{1/3} + 1$? It can be more difficult... There are *automated* ways to find a vanishing polynomial (not necessary the minimal polynomial).

Consider α and β two algebraic numbers with f and g for vanishing polynomials (i.e. $f(\alpha) = 0$ and $g(\beta) = 0$).

We write $(\alpha_i)_i$ and $(\beta_j)_j$ the *conjugate* roots of α and β (note that there is an *i* such that $\alpha_i = \alpha$ and a *j* such that $\beta_j = \beta$):

$$f = \prod_{i} X - \alpha_{i}, \qquad g = \prod_{j} X - \beta_{j}, \tag{1}$$

• Addition: $\alpha + \beta$? Let $\tilde{f}(X) = f(Y - X)$. By Equation (1) above, $\tilde{f} = \prod_i Y - (X + \alpha_i)$. Eq (1) of Slide 9 gives: $r(Y) := \operatorname{Res}_X(\tilde{f}, g) = \prod_{i,j} Y - \alpha_i - \beta_j$. In particular $r(\alpha + \beta) = 0$.

Application (Cf. Mathematica file "VanishPolyOnAlgNbr.nb"): take $\alpha = \sqrt{2}$ and $\overline{\beta} = \sqrt{3}$, then $f = X^2 - 2$ and $g = X^2 - 3$: $\text{Res}_X((Y-X)^2 - 3, X^2 - 2) = Y^4 - 10Y^2 + 1$.

• Multiplication $\alpha\beta$? Let $\tilde{f}(X) = f(\frac{Y}{X})$. By Equation (1), it arrives $\tilde{f}(X) = \prod_i \frac{Y}{X} - \alpha_i$ and $X^{\deg(f)}\tilde{f}(X) \stackrel{(\bullet)}{=} \prod_i Y - \alpha_i X$. Recall that the sum of the roots $\sum_i \alpha_i$ and the product $\prod_i \alpha_i$ verify

$$f(X) = X^{\deg(f)} - (\alpha_1 + \dots + \alpha_{\deg(f)}) X^{\deg(f)-1} + \dots + (-1)^{\deg(f)} (\prod_i \alpha_i),$$

$$\Rightarrow \quad X^{\deg(f)}\tilde{f} = Y^{\deg(f)} - \left(\sum_{i} \alpha_{i}\right)Y^{\deg(f)-1}X + \dots + (-1)^{\deg(f)}\left(\prod_{i} \alpha_{i}\right)X^{\deg(f)}.$$

If we use the equality (4) of the main theorem 1 (Slide 9), we have:

$$r(Y) = \operatorname{\mathsf{Res}}_x(X^{\operatorname{deg}(f)}f\Big(\frac{Y}{X}\Big), g(X)) = (-1)^{\operatorname{deg}(g)\operatorname{deg}(f)}(\prod_i \alpha_i)^{\operatorname{deg}(g)}\prod_j \beta_j^{\operatorname{deg}(f)}\tilde{f}(\beta_j).$$

Equality (•) gives: $\beta_j^{\deg(f)} \tilde{f}(\beta_j) = \prod_i Y - \alpha_i \beta_j$, we get: $r(Y) = \pm \prod_{i,j} Y - \alpha_i \beta_j$. In particular $r(\alpha \beta) = 0$.

Application: $\alpha = \sqrt{2} + \sqrt{3}$ (so $f = X^4 - 10X^2 + 1$) and $\beta = 19^{\frac{1}{7}}$ (so $g = X^7 - 19$). Then $\operatorname{Res}_X(Y^7 - 19X^7, X^4 - 10X^2 + 1) = Y^{28} - 3362329730Y^{14} + 130321$.

• Composition by a polynomial $h \in \mathbb{Q}[X]$. What is a vanishing polynomial of $h(\alpha)$? By the equality (3) of the main theorem (Slide 9) we have:

$$r(Y) = \mathsf{Res}_X(Y - h(X), f(X)) = (-1)^{\deg(f)} \prod_{1 \le i \le \deg(f)} Y - h(\alpha_i).$$

In particular $r(h(\alpha)) = 0$.

<u>Application</u>: $h(X) = X^2 + X + 1$, and $\alpha = 2^{\frac{1}{3}}$. Then $\operatorname{Res}_X(Y - h(X), X^3 - 1)$ is a vanishing polynomial of $h(\alpha) = 2^{2/3} + 2^{1/3} + 1$.

3 Computation of the resultant

We focus on resultants of bivariate polynomials in X, Y over a field \mathbb{K} . Often, a similar reasoning holds for resultants of polynomials in $\mathbb{Z}[X]$.

Determinant of the Sylvester matrix. Not a good idea, the matrix is too large, and computing the determinant is too costly in general.

Euclidean algorithm for resultant A better method consists in using the Euclidean algorithm, that is authorized by the following Corollary of the main theorem 1.

Corollary 3 Let $A, B \in k[X]$, k being a field, with deg A > deg B. Let A = BQ + R be the Euclidean division of A by B, deg R < deg B. We have:

$$\mathsf{Res}(A,B) = (-1)^{\deg(A)\deg(B)} \mathsf{LC}(B)^{\deg(A)-\deg(R)} \mathsf{Res}(B,R).$$

PROOF: This follows from the formulas of the main theorem Slide 9:

$$\operatorname{\mathsf{Res}}(A,B) \stackrel{eq. (2)}{=} (-1)^{\operatorname{deg}(A)\operatorname{deg}(B)}\operatorname{LC}(B)^{\operatorname{deg}(A)}\prod_{j}A(\beta_{j})$$
$$= (-1)^{\operatorname{deg}(A)\operatorname{deg}(B)}\operatorname{LC}(B)^{\operatorname{deg}(A)}\prod_{j}B(\beta_{j})Q(\beta_{j}) + R(\beta_{j})$$
but $B(\beta_{j}) = 0, = (-1)^{\operatorname{deg}(A)\operatorname{deg}(B)}\operatorname{LC}(B)^{\operatorname{deg}(A)}\prod_{j}R(\beta_{j})$

On the other hand, $\operatorname{Res}(B, R) \stackrel{eq. (3)}{=} \operatorname{LC}(B)^{\operatorname{deg}(B)} \prod_j R(\beta_j)$. We replace this formula in the equation above, and obtain the required formula.

This formula permits to compute the resultant in an Euclidean style, like hereunder (Cf. Mathematica file "Syl-2.nb" and the function ResEucl at the end).

In the left-hand side below, d_i means the degree of A_i .

Standard Euclidean algorithm	Euclidean algorithm for the resultant
$\begin{array}{l} A_{1} \leftarrow A \\ A_{2} \leftarrow B \\ i \leftarrow 2 \\ while(A_{i} \neq 0) \{ \\ A_{i-1} = bA_{i} + r /\!/Euclidean \ division \\ A_{i+1} \leftarrow r \\ i \leftarrow i+1 \\ \} \\ return \ A_{i} \end{array}$	$\begin{array}{l} A_{1} \leftarrow A \\ A_{2} \leftarrow B \\ R_{1} \leftarrow 1 \\ i \leftarrow 2 \\ \text{while}(\deg A_{i} > 0) \{ \\ A_{i-1} = bA_{i} + r //Euclidean \ division \\ A_{i+1} \leftarrow r \\ R_{i} \leftarrow (-1)^{d_{i}d_{i-1}} \text{LC}(A_{i})^{d_{i-1}-d_{i+1}} R_{i-1} \\ i \leftarrow i+1 \\ \} \\ \text{if } (A_{i} \neq 0) \ \text{then return } R_{i-1} \text{LC}(A_{i})^{d_{i-1}} \\ \text{else return } 0 \end{array}$

Correctness: While deg $A_i > 0$ we have $\operatorname{Res}(A, B) \stackrel{(\star)}{=} R_i \operatorname{Res}(A_i, A_{i-1})$ (exercise: proof by induction on $i \ge 2$, using Corollary 4).

If deg $A_i = 0$, we exit the while loop and if $A_i = 0$, then $\text{Res}(A_i, A_{i-1}) = 0$, hence Res(A, B) = 0 by Equality (*). If $A_i \neq 0$, then deg $(A_i) = 0$ says that A_i is a constant and the Sylvester matrix of A_{i-1} and A_i is diagonal with $A_i = \text{LC}(A_i)$ on the diagonal, and $\text{Syl}(A_i, A_{i-1})$ has size $d_{i-1} = \text{deg}(A_{i-1})$.