MMA: sūgaku tokuron I. Lecture VI Resultant and applications (Part II)

Xavier Dahan,

2010, June 17th \& 24th

1 Intersection of 2 curves

R is a commutative ring, that is an integral domain (like $R=\mathbb{Z}, R=k[X]$ etc.).
We have seen (Slide 2) that the Sylvester matrix of 2 polynomials A and B in $R[X]$ represents the linear map $(f, g) \mapsto A f+B g$ (in a relevant basis. . .). Actually the resultant of A and B is in the image of this linear map. Precisely, there is the following proposition:

Proposition 2 There exists $U \in R[X]_{<n}$ and $V \in R[X]_{<m}$ such that

$$
A U+B V=\operatorname{Res}(A, B)
$$

Moreover U and V are polynomials in $\mathbb{Z}[$ coefficients of A and coefficients of $B]$.
Proof: By construction, $\operatorname{Syl}(A, B) \in \operatorname{Mat}_{n+m}(R)$. Let us extend the scalars from R to $R[X]$, so that $\operatorname{Syl}(A, B) \in \operatorname{Mat}_{n+m}(R[X])$.

Let us write $\operatorname{Syl}(A, B)=\left(C_{1}\left|C_{2}\right| \cdots \mid C_{n+m}\right)$, where C_{i} represents the i-th column in $R[X]^{n+m}$ of $\operatorname{Syl}(A, B)$.

Recall that the determinant of a matrix does not change if we add to a column a linear combination of the others.

Hence we perform this replacement: $C_{m+n}^{\prime} \leftrightarrow C_{1} X^{n+m-1}+C_{2} X^{n+m-2}+\cdots+C_{n+m-1} X+$ C_{n+m}, to obtain:

We can see that: $C_{m+n}^{\prime}={ }^{t}(\underbrace{X^{n-1} A, X^{n-1} A, \ldots, X A, A}_{n}, \underbrace{X^{m-1} B, \ldots, X B, B}_{m})$.

Moreover, the determinant of M is unchanged equal to $\operatorname{det} \operatorname{Syl}(A, B)=\operatorname{Res}(A, B)$. We compute it by developing along the column C_{m+n}^{\prime}. Let M_{i} be the $(i, n+m)$ cofactor matrix of M, obtained by removing the i-th line and the $m+n$-th column of M :

$$
\operatorname{Res}(A, B)=\sum_{\ell=1}^{n}(-1)^{m+n+\ell} X^{m-\ell} A \operatorname{det} M_{\ell}+\sum_{\ell=1}^{m}(-1)^{m+n+\ell} X^{n-\ell} B \operatorname{det} M_{n+\ell} .
$$

Let $U=\sum_{\ell=1}^{n}(-1)^{m+n+\ell} X^{m-\ell} \operatorname{det} M_{\ell}$ and let $V=\sum_{\ell=1}^{m}(-1)^{m+n+\ell} X^{n-\ell} \operatorname{det} M_{n+\ell}$, so that $\operatorname{Res}(A, B)=A U+B V$. This proves the fist part of the theorem. Next, since X does not appear in each cofactor matrix M_{i}, we have $\operatorname{det} M_{i} \in R$ and $\operatorname{deg}(U)<m$ and $\operatorname{deg}(V)<n$, as required.

Finally since $\operatorname{det} M_{\ell} \in \mathbb{Z}[$ coefficients of A and $B]$ we also have $U, V \in \mathbb{Z}[$ coefficients of A and $B]$.

We consider two plane curves \mathcal{C}_{A} and \mathcal{C}_{B} defined by polynomials A and B in $\mathbb{k}[X . Y]$. Let us write $\left\lvert\, \begin{aligned} & A=a_{0}(X)+a_{1}(X) Y+\cdots+a_{m-1}(X) Y^{m-1}+a_{m}(X) Y^{m} \\ & B=b_{0}(X)+b_{1}(X) Y+\cdots+b_{n}(X) Y^{n}\end{aligned}\right.$. The following proposition 3 gives information about the coordinates of the projection on the X-axis of the intersection points $\mathcal{C}_{A} \cap \mathcal{C}_{B}$. Before, one remark and a lemma:

Remark: $\operatorname{Res}_{X}(A, B)$ or $\operatorname{Res}_{Y}(A, B)$? If we see A and B as univariate polynomial in $R[Y]$ with coefficients in $R=\mathbb{k}[X]$ then the Sylvester matrix is constructed with its entries in $R=\mathbb{k}[X]$, and the resultant is an element of $R=\mathbb{k}[X]$. We have eliminated Y, and we write $\operatorname{Res}_{Y}(A, B) \in \mathbb{k}[X]$.

If we see A and B as univariate polynomials $R[X]$ with coefficients in $R=\mathbb{k}[Y]$, then the Sylvester matrix has its entries in $R=\mathbb{k}[Y]$, and the resultant is in $R=\mathbb{k}[Y]$.

Lemma 5 Let $A, B \in \mathbb{k}[X, Y]$. The polynomials A and B have a common factor in $\mathbb{k}[X, Y]$ if and only if $\operatorname{Res}_{Y}(A, B)=0$.

Proof: Corollary 1 says that A and B have certainly a common factor with coefficients in $\mathbb{k}(X)=\operatorname{Frac}(\mathbb{k}[X])$, if $\operatorname{Res}_{Y}(A, B)=0$. Let $\tilde{D} \in \mathbb{k}(X)$ be a such a factor, and let us write:

$$
A=\tilde{D} \tilde{A}_{0} \quad B=\tilde{D} \tilde{B}_{0}, \quad \text { with } \tilde{D}, \tilde{A}_{0}, \tilde{B}_{0} \in \mathbb{k}(X)[Y] .
$$

The theorem of Gauss permits to conclude:
Gauss theorem: Let \mathbb{A} be an unique factorization domain. This means that factorization into prime is possible (like in $\mathbb{Z}, k\left[X_{1}, \ldots, X_{n}\right]$). Let $\mathbb{K}=$ $\operatorname{Frac}(\mathbb{A})$ be the field of fractions of \mathbb{A}. Assume that $P \in \mathbb{A}[X]$ with $\operatorname{deg}(P) \geq$ 2, admits the factorization $P=\tilde{Q} \tilde{R}$ over \mathbb{K}, i.e. $\tilde{Q} \in \mathbb{K}[X]$ and $\tilde{R} \in \mathbb{K}[X]$.
Then P admits a factorization over \mathbb{A}; more precisely there exists, $Q \in \mathbb{A}[X]$ and $R \in \mathbb{A}[X]$ such that $P=Q R$. Moreover R and Q are uniquely determined by \tilde{R} and \tilde{Q}, and have the same degree.

We apply it with $\mathbb{A}=\mathbb{k}[X]$ and $\mathbb{K}_{\tilde{D}}=\mathbb{k}(X)$. There exists D, A_{0} and B_{0} in $\mathbb{k}[X, Y]$ uniquely determined by \tilde{D}, \tilde{A}_{0} and \tilde{B}_{0} and of the same degree, such that $A=D A_{0}$ and $B=D B_{0}$.

The main result concerning the intersection points of the two curves is:

Proposition 3 Let $r(X)=\operatorname{Res}_{Y}(A, B) \in \mathbb{k}[X]$. Let $x \in \overline{\mathbb{k}}$ be a root of r. Then, one of the two facts is true:
(i) $a_{m}(x)=0=b_{n}(x)$ or
(ii) $\exists y \in \overline{\mathbb{k}} \quad$ such that $(x, y) \in \mathcal{C}_{A} \cap \mathcal{C}_{B}$.

Proof: Let $\phi_{x}: \overline{\mathbb{k}}[X] \rightarrow \overline{\mathbb{k}}, P \mapsto P(x)$, be the evaluation map at x.
If $\phi_{x}\left(a_{m}\right)=0$ and $\phi_{x}\left(b_{n}\right)=0$, so that x is a common root of a_{m} and b_{n} and we are in case (i); then:
the first column of the matrix $\phi_{x}(\operatorname{Syl}(A, B))$ is null $\Longleftrightarrow \operatorname{det} \phi_{x}(\operatorname{Syl}(A, B))=0$

$$
\begin{aligned}
& \Longleftrightarrow \phi_{x}(\operatorname{det}(\operatorname{Syl}(A, B)))=0 \\
& \Longleftrightarrow \phi_{x}\left(\operatorname{Res}_{Y}(A, B)\right)=0=r(x)
\end{aligned}
$$

If $a_{m}(x) \neq 0$ or $b_{n}(x) \neq 0$ (not case $\left.(i)\right)$ say $a_{m}(x) \neq 0$, for example. Then by the specialization of the resultant (Proposition 1, second point) we have

$$
\begin{aligned}
r(x)=\phi_{x}\left(\operatorname{Res}_{Y}(A, B)\right) & =\phi_{x}\left(a_{m}\right)^{m-\operatorname{deg}_{Y}\left(\phi_{x}(A)\right)} \operatorname{Res}\left(\phi_{x}(A), \phi_{x}(B)\right) \\
& =a_{m}(x)^{\ell} \operatorname{Res}(A(x, Y), B(x, Y)) .
\end{aligned}
$$

with $\ell=m-\operatorname{deg}_{Y}(A(x, Y))$. Because $a_{m}(x) \neq 0$,

$$
r(x)=0 \quad \Longleftrightarrow \quad \operatorname{Res}(A(x, Y), B(x, Y))=0
$$

by Lemma $5, \quad \Longleftrightarrow A(x, Y)$ and $B(x, Y)$ have a common factor in $\overline{\mathbb{k}}[Y]$

$$
\Longleftrightarrow \quad \exists y \in \overline{\mathbb{k}} \text { such that } A(x, y)=0=B(x, y)
$$

which proves that any root x of r not verifying Case (i), verifies Case (ii).
REMARK: Cf Mathematica file"Syl-2.nb" for examples of intersections of 2 plane curves.

2 Vanishing polynomial of an algebraic number

(Cf. Mathematica file "VanishPolyOnAlgNbr.nb").
\rightarrow Algebraic numbers... review Lecture II!
Problem: Given an algebraic number $\alpha \in \overline{\mathbb{Q}}$, how to find a vanishing polynomial of α ? (i.e. a polynomial $P \in \mathbb{Q}[X]$ such that $P(\alpha)=0$).

For $\alpha=\sqrt{2}$, then it is $X^{2}-2$. For $\alpha=\sqrt{2}+\sqrt{3}$, then $\alpha^{2}=2+2 \sqrt{6}+3$, so $\left(\alpha^{2}-5\right)^{2}=24$, and α is a root of $X^{4}-10 X^{2}+1$.

What about $\alpha=2^{2 / 3}+2^{1 / 3}+1$? It can be more difficult. . . There are automated ways to find a vanishing polynomial (not necessary the minimal polynomial).

Consider α and β two algebraic numbers with f and g for vanishing polynomials (i.e. $f(\alpha)=0$ and $g(\beta)=0)$.

We write $\left(\alpha_{i}\right)_{i}$ and $\left(\beta_{j}\right)_{j}$ the conjugate roots of α and β (note that there is an i such that $\alpha_{i}=\alpha$ and a j such that $\beta_{j}=\beta$):

$$
\begin{equation*}
f=\prod_{i} X-\alpha_{i}, \quad g=\prod_{j} X-\beta_{j} \tag{1}
\end{equation*}
$$

- Addition: $\alpha+\beta$? Let $\tilde{f}(X)=f(Y-X)$. By Equation (1) above, $\tilde{f}=\prod_{i} Y-(X+$ $\left.\alpha_{i}\right) . \mathrm{Eq}(1)$ of Slide 9 gives: $r(Y):=\operatorname{Res}_{X}(\tilde{f}, g)=\prod_{i, j} Y-\alpha_{i}-\beta_{j}$. In particular $r(\alpha+\beta)=0$.
Application (Cf. Mathematica file "VanishPolyOnAlgNbr.nb"): take $\alpha=\sqrt{2}$ and $\beta=\sqrt{3}$, then $f=X^{2}-2$ and $g=X^{2}-3: \operatorname{Res}_{X}\left((Y-X)^{2}-3, X^{2}-2\right)=Y^{4}-10 Y^{2}+1$.
- Multiplication $\alpha \beta$? Let $\tilde{f}(X)=f\left(\frac{Y}{X}\right)$. By Equation (1), it arrives $\tilde{f}(X)=\prod_{i} \frac{Y}{X}-$ α_{i} and $X^{\operatorname{deg}(f)} \tilde{f}(X) \stackrel{(\bullet)}{=} \prod_{i} Y-\alpha_{i} X$. Recall that the sum of the roots $\sum_{i} \alpha_{i}$ and the product $\prod_{i} \alpha_{i}$ verify

$$
\begin{gathered}
f(X)=X^{\operatorname{deg}(f)}-\left(\alpha_{1}+\cdots+\alpha_{\operatorname{deg}(f)}\right) X^{\operatorname{deg}(f)-1}+\cdots+(-1)^{\operatorname{deg}(f)}\left(\prod_{i} \alpha_{i}\right), \\
\Rightarrow \quad X^{\operatorname{deg}(f)} \tilde{f}=Y^{\operatorname{deg}(f)}-\left(\sum_{i} \alpha_{i}\right) Y^{\operatorname{deg}(f)-1} X+\cdots+(-1)^{\operatorname{deg}(f)}\left(\prod_{i} \alpha_{i}\right) X^{\operatorname{deg}(f)} .
\end{gathered}
$$

If we use the equality (4) of the main theorem 1 (Slide 9), we have:

$$
r(Y)=\operatorname{Res}_{x}\left(X^{\operatorname{deg}(f)} f\left(\frac{Y}{X}\right), g(X)\right)=(-1)^{\operatorname{deg}(g) \operatorname{deg}(f)}\left(\prod_{i} \alpha_{i}\right)^{\operatorname{deg}(g)} \prod_{j} \beta_{j}^{\operatorname{deg}(f)} \tilde{f}\left(\beta_{j}\right) .
$$

Equality (\bullet) gives: $\beta_{j}^{\operatorname{deg}(f)} \tilde{f}\left(\beta_{j}\right)=\prod_{i} Y-\alpha_{i} \beta_{j}$, we get: $r(Y)= \pm \prod_{i, j} Y-\alpha_{i} \beta_{j}$. In particular $r(\alpha \beta)=0$.
Application: $\alpha=\sqrt{2}+\sqrt{3}$ (so $f=X^{4}-10 X^{2}+1$) and $\beta=19^{\frac{1}{7}}$ (so $g=X^{7}-19$). $\left.\overline{\text { Then } \operatorname{Res}_{X}\left(Y^{7}\right.}-19 X^{7}, X^{4}-10 X^{2}+1\right)=Y^{28}-3362329730 Y^{14}+130321$.

- Composition by a polynomial $h \in \mathbb{Q}[X]$. What is a vanishing polynomial of $h(\alpha)$? By the equality (3) of the main theorem (Slide 9) we have:

$$
r(Y)=\operatorname{Res}_{X}(Y-h(X), f(X))=(-1)^{\operatorname{deg}(f)} \prod_{1 \leq i \leq \operatorname{deg}(f)} Y-h\left(\alpha_{i}\right) .
$$

In particular $r(h(\alpha))=0$.
Application: $h(X)=X^{2}+X+1$, and $\alpha=2^{\frac{1}{3}}$. Then $\operatorname{Res}_{X}\left(Y-h(X), X^{3}-1\right)$ is a vanishing polynomial of $h(\alpha)=2^{2 / 3}+2^{1 / 3}+1$.

3 Computation of the resultant

We focus on resultants of bivariate polynomials in X, Y over a field \mathbb{K}. Often, a similar reasoning holds for resultants of polynomials in $\mathbb{Z}[X]$.

Determinant of the Sylvester matrix. Not a good idea, the matrix is too large, and computing the determinant is too costly in general.

Euclidean algorithm for resultant A better method consists in using the Euclidean algorithm, that is authorized by the following Corollary of the main theorem 1.

Corollary 3 Let $A, B \in \mathbb{k}[X]$, \mathbb{k} being a field, with $\operatorname{deg} A>\operatorname{deg} B$. Let $A=B Q+R$ be the Euclidean division of A by $B, \operatorname{deg} R<\operatorname{deg} B$. We have:

$$
\operatorname{Res}(A, B)=(-1)^{\operatorname{deg}(A) \operatorname{deg}(B)} \operatorname{LC}(B)^{\operatorname{deg}(A)-\operatorname{deg}(R)} \operatorname{Res}(B, R)
$$

Proof: This follows from the formulas of the main theorem Slide 9:

$$
\begin{aligned}
& \qquad \begin{aligned}
& \operatorname{Res}(A, B) \stackrel{e q .(2)}{=}(-1)^{\operatorname{deg}(A) \operatorname{deg}(B)} \operatorname{LC}(B)^{\operatorname{deg}(A)} \prod_{j} A\left(\beta_{j}\right) \\
&=(-1)^{\operatorname{deg}(A) \operatorname{deg}(B)} \operatorname{LC}(B)^{\operatorname{deg}(A)} \prod_{j} B\left(\beta_{j}\right) Q\left(\beta_{j}\right)+R\left(\beta_{j}\right) \\
& \text { but } B\left(\beta_{j}\right)=0,=(-1)^{\operatorname{deg}(A) \operatorname{deg}(B)} \mathrm{LC}(B)^{\operatorname{deg}(A)} \prod_{j} R\left(\beta_{j}\right)
\end{aligned}, l
\end{aligned}
$$

On the other hand, $\operatorname{Res}(B, R) \stackrel{\text { eq. (3) }}{=} \operatorname{LC}(B)^{\operatorname{deg}(B)} \prod_{j} R\left(\beta_{j}\right)$. We replace this formula in the equation above, and obtain the required formula.

This formula permits to compute the resultant in an Euclidean style, like hereunder (Cf. Mathematica file "Syl-2.nb" and the function ResEucl at the end).

In the left-hand side below, d_{i} means the degree of A_{i}.

Standard Euclidean algorithm	Euclidean algorithm for the resultant
	$A_{1} \leftarrow A$
$A_{1} \leftarrow A$	$A_{2} \leftarrow B$
$A_{2} \leftarrow B$	$R_{1} \leftarrow 1$
$i \leftarrow 2$	$i \leftarrow 2$
while $\left(A_{i} \neq 0\right)\{$	while $\left(\operatorname{deg} A_{i}>0\right)\{$
$A_{i-1}=b A_{i}+r \quad / /$ Euclidean division	$A_{i-1}=b A_{i}+r \quad / /$ Euclidean division
$A_{i+1} \leftarrow r$	$A_{i+1} \leftarrow r$
$i \leftarrow i+1$	$R_{i} \leftarrow(-1)^{d_{i} d_{i-1}} \operatorname{LC}\left(A_{i}\right)^{d_{i-1}-d_{i+1}} R_{i-1}$
$\}$	$i \leftarrow i+1$
return A_{i}	$\}$
	if $\left(A_{i} \neq 0\right)$ then return $R_{i-1} \operatorname{LC}\left(A_{i}\right)^{d_{i-1}}$
	else return 0

Correctness: While $\operatorname{deg} A_{i}>0$ we have $\operatorname{Res}(A, B) \stackrel{(\star)}{=} R_{i} \operatorname{Res}\left(A_{i}, A_{i-1}\right)$ (exercise: proof by induction on $i \geq 2$, using Corollary 4).

If $\operatorname{deg} A_{i}=0$, we exit the while loop and if $A_{i}=0$, then $\operatorname{Res}\left(A_{i}, A_{i-1}\right)=0$, hence $\operatorname{Res}(A, B)=0$ by Equality (\star). If $A_{i} \neq 0$, then $\operatorname{deg}\left(A_{i}\right)=0$ says that A_{i} is a constant and the Sylvester matrix of A_{i-1} and A_{i} is diagonal with $A_{i}=\operatorname{LC}\left(A_{i}\right)$ on the diagonal, and $\operatorname{Syl}\left(A_{i}, A_{i-1}\right)$ has size $d_{i-1}=\operatorname{deg}\left(A_{i-1}\right)$.

