MMA 数学特論 I

Algorithms for polynomial systems: elimination & Gröbner bases 多項式系のアルゴリズム: グレブナー基底 & 消去法

Lecture VII: Elimination and Nullstellensatz

(summary of a full lesson given on the blackboard) July, 1st, 8th 2010.

Xavier Dahan

Review on: Elimination and the Nullstellensatz

All fields are infinite in this chapter

- $f_1, \ldots, f_s \subset k[X_1, \ldots, X_n]$ a polynomial system.
- k_1 any field extension $k_1|k$,
- $\mathbf{V}_{k_1}(f_1,\ldots,f_s)$ the set of common solutions in k_1 of the polynomials f_i :

$$\mathbf{V}_{k_1}(f_1, \dots, f_s) := \{ (x_1, \dots, x_n) \in k_1^n \mid \forall 1 \le i \le s, \quad f_i(x_1, \dots, x_n) = 0 \} \\
= \mathbf{V}_{k_1}(f_1) \cap \dots \cap \mathbf{V}_{k_1}(f_s)$$

Definition 1 Such sets are called affine varieties defined over k.

Remark: This depends only of the polynomial system f_1, \ldots, f_s and the field k, not on the field k_1 . Indeed, we have:

for any field k_0 such that $k \subset k_0 \subset k_1$, $\mathbf{V}_{k_0}(f_1, \ldots, f_s) = \mathbf{V}_{k_1}(f_1, \ldots, f_s) \cap k_0^n$

Affine variety over field extensions (example)

Algebraic numbers: Let $\overline{\mathbb{Q}} \subsetneq \mathbb{C}$, be the algebraic closure of \mathbb{Q} ($\overline{\mathbb{Q}}$ is called the field of *algebraic numbers*):

$$\overline{\mathbb{Q}} := \{ \alpha \in \mathbb{C}, \text{such that } \exists P \in \mathbb{Q}[X], \ P(\alpha) = 0 \},\$$

 \rightarrow Cf. Lecture II

Example: Let $f_1 = (XY)^2 + Y$ and $f_2 = (Y-1)(Y^2-2)$ a system of 2 equations.

Over \mathbb{Q} : {Y = 1} is solution of f_2 , but $f_1(X, 1) = X^2 + 1$ has no solutions, hence $\mathbf{V}_{\mathbb{Q}}(f_1, f_2) = \emptyset$.

Over $k_1 = \mathbb{Q}(i)$: $V_{k_1}(f_1, f_2) = \{(i, 1), (-i, 1)\},$ $V_{k_2}(f_1, f_2) = \{(\pm \frac{\sqrt{2}}{2}, \sqrt{\sqrt{2}})\}$ $V_{k_3}(f_1, f_2) = \mathbb{V}_{k_2}(f_1, f_2) \cup \mathbb{V}_{k_1}(f_1, f_2)$

Affine variety of an ideal

- let $I = \langle f_1, \ldots, f_s \rangle$ an ideal of $k[X_1, \ldots, X_n]$
- for all $f \in I$ and field extension $k_1 | k$: $\mathbf{V}_{k_1}(f_1, \ldots, f_s) \subset \mathbf{V}_{k_1}(f)$.
- If $\langle g_1, \ldots, g_t \rangle = \langle f_1, \ldots, f_s \rangle$, then $\mathbf{V}_{k_1}(f_1, \ldots, f_s) = \mathbf{V}_{k_1}(g_1, \ldots, g_t)$.
- \Rightarrow $\mathbf{V}_{k_1}(f_1, \ldots, f_s)$ depends only on the ideal *I*: we denote $\mathbf{V}_{k_1}(I) = \mathbf{V}_{k_1}(f_1, \dots, f_s).$

Ideals of $k[X_1, \ldots, X_n] \rightarrow \text{Affine varieties defined over } k$ Ι $\mathbf{V}_{k_1}(I) \subset k_1^n$ \mapsto

Porperties:

- $\mathbf{V}(.)$ is decreasing: $I \subset J \Rightarrow \mathbf{V}(J) \subset \mathbf{V}(I).$
- If $1 \in I$, then $\mathbf{V}(I) = \emptyset$
- $\mathbf{V}(.)$ is not one-one: $\langle (X-1)^2 \rangle \subset \langle X-1 \rangle.$

(1 has no solution)

$$\mathbf{V}_{\mathbb{C}}((X-1)^2) = \mathbf{V}_{\mathbb{C}}(X-1) = \{1\},$$
but

Ideal of a set. Field of definition of a variety

• Let $S \subset k^n$

 $\mathbf{I}_{k}(S) := \{ f \in k[X_{1}, \dots, X_{n}] \mid f(x_{1}, \dots, x_{n}) = 0, \ \forall (x_{1}, \dots, x_{n}) \in S \}.$

This is an ideal of $k[X_1, \ldots, X_n]$ the vanishing ideal of S.

• Let
$$V \subset k^n$$
 be an affine variety.

 $\iff \exists I \subset k[X_1, \ldots, X_n] \text{ ideal, such that } V = \mathbf{V}_k(I).$

Let k_0 be the **smallest** field such that:

$$\exists g_1, \ldots, g_s \in k_0[X_1, \ldots, X_n], \text{ and } \langle g_1, \ldots, g_s \rangle = I.$$

Definition 2 The field k_0 is called the field of definition of V.

It follows that V is defined over k_0 .

Example: n = 1. The field of definition of $\{\sqrt{2}\}$ is $\mathbb{Q}(\sqrt{2})$. But the field of definition of $\{\pm\sqrt{2}\}$ is \mathbb{Q} .

Properties of vanishing ideals

Affine varieties (defined over k_0) \rightarrow Ideals of $k_0[X_1, \dots, X_n]$ $V \qquad \mapsto \qquad \mathbf{I}(V)$

- Do not care too much about the field k where is $V \subset k^n \dots$
- What is important is its field of definition k_0 .
- $\mathbf{I}(.)$ is a decreasing map: $V \subset W \Rightarrow \mathbf{I}(W) \subset \mathbf{I}(V).$

Lemma 1 Given an ideal $I \subset k[X_1, \ldots, X_n]$, holds: $I \subset I(\mathbf{V}(I))$ (not equal in general).

PROOF: (on the blackboard, with examples ...)

Lemma 2 Let V and W be 2 affine varieties, then: $V \subset W \Leftrightarrow \mathbf{I}(W) \subset (V)$. It follows that the map $\mathbf{I}(.)$ is one-one: $V \neq W \Rightarrow \mathbf{I}(V) \neq \mathbf{I}(W)$

PROOF: (on the blackboard)

Elimination ideal

Let $S \subset k^n$. For $\ell = 1, ..., n - 1$, and $s = (s_1, ..., s_n) \in S$ let $\pi_{\ell}(s) := (s_{\ell+1}, ..., s_n)$. $\pi_{\ell}(S) := \{\pi_{\ell}(s), s \in S\} \to$ projection that eliminates the first ℓ coordinates. ! If V is an affine variety, then $\pi_{\ell}(V)$ is not an affine variety in general. **Definition 3** Let $I \subset k[X_1, \ldots, X_n]$ be an ideal. Let $0 \le \ell \le n - 1$. ℓ -th elimination ideal of $I: E_{\ell}(I) := I \cap k[X_{\ell+1}, \ldots, X_n]$ $E_0(I) = I$, $E_{\ell+1}(I) = E_1(E_{\ell}(I))$ ($E_1(.)$ eliminates the first variable). **Lemma 3** Let $V = \mathbf{V}(I)$ the affine variety defined by the ideal $I \subset k[X_1, \ldots, X_n]$. The inclusion $\pi_{\ell}(V) \subset \mathbf{V}(E_{\ell}(I))$ holds. **PROOF**: (on the balckboard, with counterexamples to equality)

Elimination theorem

Theorem 1 Let \prec be the monomial order $lex(X_1, \ldots, X_n)$, and $I \subset k[X_1, \ldots, X_n]$ an ideal. Let G be a Gröbner basis of I for \prec . Define for $0 \leq \ell \leq n-1$ the set $G_\ell = G \cap k[X_{\ell+1}, \ldots, X_n].$ Then $\langle G_\ell \rangle = E_\ell(I)$ $(= I \cap k[X_{\ell+1}, \ldots, X_n]).$

Important remark:

Let $I = \langle A, B \rangle \subset k[X, Y] \to \text{system of 2 polynomials } A, B, 2 \text{ unknowns } X, Y.$ Then $E_1(I) = I \cap k[Y]$ verifies: $E_1(I) = \langle \text{Res}_X(A, B) \rangle$

 \rightarrow Lex. GB. generalizes resultants.

Fact: $x \succ_{lex} y \succ_{lex} z$ Gröbner bases eliminate variables; it looks like:

$$x \begin{cases} g_s(z,y)x^{c_s} + \cdots x^{c_s - 1} + \cdots \text{ terms of } deg(x) < c_s - 1 \\ \vdots \\ g_t(z,y)x^{c_t} + \cdots \text{ terms of } deg(x) < c_t \end{cases}$$

$$G_1 \qquad y \begin{cases} g_u(z)y^{c_u} + \cdots \text{ terms of } deg(y) < c_u \\ \vdots \\ \vdots \\ g_u(z)y^{c_u} + \cdots \text{ terms of } deg(y) < c_u \end{cases}$$

$$G_2 \qquad z \begin{cases} z^{c_\ell} + \cdots z^{c_\ell - 1} + \cdots \text{ terms of } deg(z) < c_\ell \\ \vdots \\ z^{c_1} + \cdots \text{ terms of } deg(z) < c_1 \end{cases}$$

Fact: $x \succ_{lex} y \succ_{lex} z$ Gröbner bases eliminate variables; it looks like:

$$x \begin{cases} g_s(z,y)x^{c_s} + \cdots x^{c_s - 1} + \cdots \text{ terms of } deg(x) < c_s - 1 \\ \vdots \\ g_t(z,y)x^{c_t} + \cdots \text{ terms of } deg(x) < c_t \end{cases}$$
$$G_1 \qquad y \begin{cases} g_u(z)y^{c_u} + \cdots \text{ terms of } deg(y) < c_u \\ \vdots \\ G_2 \qquad z \begin{cases} z^{c_1} + \cdots \text{ terms of } deg(z) < c_1 \end{cases}$$

 $G_2 = G \cap k[z] \Rightarrow G_2$ can be generated by **one** polynomial

Fact: $x \succ_{lex} y \succ_{lex} z$ Gröbner bases eliminate variables; it looks like:

$$x \begin{cases} g_s(z,y)x^{c_s} + \cdots x^{c_s - 1} + \cdots \text{ terms of } deg(x) < c_s - 1 \\ \vdots \\ g_t(z,y)x^{c_t} + \cdots \text{ terms of } deg(x) < c_t \end{cases}$$
$$G_1 \qquad y \begin{cases} g_u(z)y^{c_u} + \cdots \text{ terms of } deg(y) < c_u \\ \vdots \\ \vdots \\ g_u(z)y^{c_u} + \cdots \text{ terms of } deg(y) < c_u \end{cases}$$

Case
$$E_2(I) = I \cap k[z] = \langle 0 \rangle \Rightarrow G_2 = \emptyset$$

Strategy:

• Solving univariate polynomials only:

first, in z

second, in y

third, in \boldsymbol{x}

• finding roots of **univariate** polynomials:

efficient numerical algorithm (like Newton-Raphson or another).

Remark: In practice, works well if the Gröbner basis is "purely" triangular,

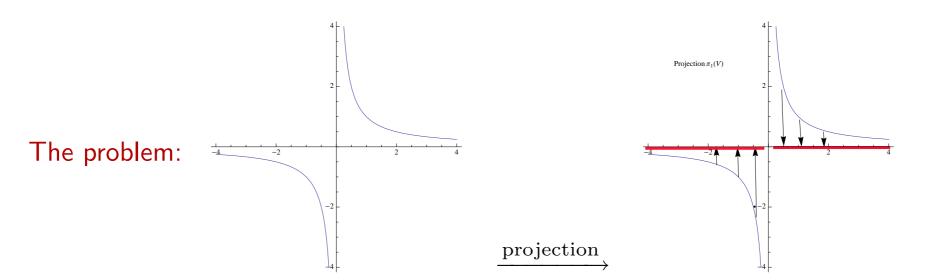
- one polynomial in x $x^{c} + f$ one polynomial in y $y^{b} +$
 - one polynomial in \boldsymbol{z}

$$x^{c} + f_{c-1}(z, y)x^{c-1} + \cdots$$

 $y^{b} + g_{b-1}(z)y^{b-1} + \cdots$
 $z^{a} + h_{a-1}z^{a-1} + \cdots$

and there are no multiplicities...

Extension theorem (on a toy example)



f(x,y) = yx - 1is a Gröbner basis of $I = \langle f \rangle$ for lex(y,x).Clearly, $E_1(I) = \langle f \rangle \cap k[x] = \langle 0 \rangle$. $\mathbf{V}_{\mathbb{C}}(E_1(I)) = \mathbb{C}$.But $\pi_1(V) = \mathbb{C} - \{0\} \Rightarrow \pi_1(V) \varsubsetneq \mathbf{V}(E_1(I))$ $\Rightarrow 0$ is a useless solution.Let us write $f(x,y) = a_1(x)y + a_0(x)$, $a_1(x) = x$, and $a_0(x) = -1$.

We have that 0 is a root of $a_1(x) = x$. We have $\mathbf{V}(E_1(I)) = \pi_1(V) \cup \mathbf{V}(a_1)$.

Extension theorem (in general)

Generalization: Let $I = \langle f_1, \ldots, f_s \rangle \subset k[X_1, \ldots, X_n]$. Let $E_1(I) = I \cap k[X_2, \ldots, X_n]$ (1st elimination ideal of I, eliminate X_1) We write: $\forall 1 \leq i \leq s, \ f_i = a_i(X_2, \ldots, X_n)X_1^{N_i} + \cdots \text{terms of degree in } X_1 < N_i,$

where $a_i \neq 0$.

Let $(x_2, \ldots, x_n) \in \mathbf{V}_{\bar{k}}(E_1(I))$ be a partial solution.

Theorem 2 Suppose that $(x_2, \ldots, x_n) \notin \mathbf{V}_{\bar{k}}(a_1, \ldots, a_s)$.

Then there exists $x_1 \in \overline{k}$ such that the partial solution can be extended to a whole solution $(x_1, \ldots, x_n) \in V = \mathbf{V}_{\overline{k}}(I)$.

$$\iff ((x_2, \dots, x_n) \notin \mathbf{V}_{\overline{k}}(a_1, \dots, a_s) \Rightarrow (x_2, \dots, x_n) \in \pi_1(V))$$
$$\iff \mathbf{V}_{\overline{k}}(E_1(I)) = \pi_1(V) \cup \mathbf{V}_{\overline{k}}(a_1, \dots, a_s)$$

Extension theorem (3 comments)

- The equality $\mathbf{V}_{\overline{k}}(E_1(I)) = \pi_1(V) \cup \mathbf{V}_{\overline{k}}(a_1, \dots, a_s)$ is true only over an algebraically closed field (like \mathbb{C}) \rightarrow we used \overline{k} and not k
- Link with resultant: (Lect. VI, Part 2, Prop. 3)

$$A(X,Y) = a_m(X)Y^m + a_{m-1}(X)Y^{m-1} + \dots + a_1(X)Y + a_0(X)$$

$$B(X,Y) = b_n(X)Y^n + b_{n-1}(X)Y^{n-1} + \dots + b_1(X)Y + b_0(X)$$

Let $r(X) = \operatorname{Res}_{Y}(A, B)$, the resultant that eliminates Y. $x \in \overline{k}, \ r(x) = 0 \iff (\exists y \in \overline{k}, A(x, y) = B(x, y) = 0 \quad \text{or } a_{m}(x) = b_{n}(x) = 0)$ $\iff \mathbf{V}_{\overline{k}}(E_{1}(A, B)) = \mathbf{V}_{\overline{k}}(r) = \pi_{1}(V) \cup \mathbf{V}_{\overline{k}}(a_{m}, b_{n}), \quad \text{with } \cup \text{ disjoint.}$

• !! In Theorem 2, the union \cup is not disjoint in general. !! But, the union \cup is disjoint if f_1, \ldots, f_s is a lex GB. (PROOF: points in $V(a_1, \ldots, a_s)$ are solutions at the infinity... requires projective tools...)

Weak Nullstellensatz

Fundamental Theorem of Algebra: Any non-constant polynomial $P(X) \in \mathbb{C}[X]$ has at least one root.

- $P \text{ is not constant } \iff (1 \notin \langle P \rangle \subset \mathbb{C}[X])$
- P has at least one root $\iff \mathbf{V}_{\mathbb{C}}(P) \neq \emptyset$.

Weak Nullstellensatz: Let f_1, \ldots, f_s be a polynomial system in $\mathbb{C}[X_1, \ldots, X_n]$.

Theorem 3 $1 \notin \langle f_1, \ldots, f_s \rangle \iff \mathbf{V}(f_1, \ldots, f_s) \neq \emptyset$

Or, the polynomial system $f_1 \ldots, f_s$ has a solution if and only if the ideal $\langle f_1, \ldots, f_s \rangle$ has no constant.

Nullstellensatz (1/2): radical ideal

Let $I \subset k[X_1, \ldots, X_n]$ be an ideal.

Lemma 1 says that $I \subset I(V(I))...$ What is I(V(I))?

Definition 4 $\sqrt{I} := \{f \in k[X_1, \ldots, x_n] \text{ such that } \exists n \in \mathbb{N} \ , \ f^n \in I\}$ This is an ideal, called the radical of I.

For any ideal J, always holds $J \subset \sqrt{J}$. An ideal J is radical, if $\sqrt{J} = J$.

Remark: Let $f \in k[X]$ a polynomial.

It has a unique factorization, that is, there exist irreducible polynomials (Cf. Lect. II, Definition 5) $P_1, \ldots, P_s \in k[X]$ such that:

$$f = P_1^{e_1} \dots P_s^{e_s}.$$

The exponent $e_i \in \mathbb{N}$ is called the multiplicity of P_i . Check that: $\sqrt{\langle f \rangle} = \langle P_1 \dots P_s \rangle$ (this is the squarefree part of f).

Nullstellensatz (2/2)

Theorem 4 Let I be an ideal of $k[X_1, \ldots, X_n]$ over an algebraically closed field k (like $k = \mathbb{C}$). We have $\mathbf{I}(\mathbf{V}(I)) = \sqrt{I}$.

Proof: (on the blacboard...)

Comments:

- True over \mathbb{C} , not true over \mathbb{R} .
- The radical \sqrt{I} is difficult to compute in general.
- **But**, it is easy to test if $f \in \sqrt{I}$ (when we know $I = \langle f_1, \ldots, f_s \rangle$):

Rabinovitch's trick: $f \in \sqrt{I} \iff 1 \in \langle f_1, \dots, f_s, 1 - Yf \rangle$, (Y new variable).

Irreducible varieties and prime ideals

Definition 5 V is irreducible if: $V = V_1 \cup V_2 \Rightarrow V = V_1 \text{ or } V = V_2$ $V = \mathbf{V}(x^2 - y^2)$ is not irreduiclbe because $V = \mathbf{V}(x - y) \cup \mathbf{V}(x + y)$. Prime ideal: (Lect. II, Def. 6) \mathfrak{p} is a prime ideal if $xy \in \mathfrak{p} \Rightarrow x \in \mathfrak{p}$ or $y \in \mathfrak{p}$. **Proposition 1** Let $V \subset k^n$ be an affine variety. V is irred. $\iff \mathbf{I}(V)$ is a prime ideal.

PROOF: (on the blackboard...)

Proposition 2 Any affine variety V is a finite union of irreducible varieties. There exists irred. varieties V_1, \ldots, V_s such that:

 $V = V_1 \cup \ldots \cup V_s.$

PROOF: (It is an indiction proof, that uses the Noetherian property...)

Corollary 1 Over an algebraically closed field k, any radical ideal $I \neq \langle 1 \rangle$ is a finite intersection of prime ideals: $I = \bigcap_{i=1}^{s} \mathfrak{p}_{1}$

PROOF: (roughly, $I = \mathbf{I}(V) = \mathbf{I}(V_1 \cup \cdots \cup V_s) = \mathbf{I}(V_1) \cap \ldots \cap \mathbf{I}(V_s)$)

The algebra-geometry dictionnary