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Review on: Elimination and the Nullstellensatz

All fields are infinite in this chapter

• f1, . . . , fs ⊂ k[X1, . . . , Xn] a polynomial system.

• k1 any field extension k1|k,

• Vk1(f1, . . . , fs) the set of common solutions in k1 of the polynomials fi:

Vk1(f1, . . . , fs) := {(x1, . . . , xn) ∈ kn
1 | ∀1 ≤ i ≤ s, fi(x1, . . . , xn) = 0}

= Vk1(f1) ∩ · · · ∩Vk1(fs)

Definition 1 Such sets are called affine varieties defined over k.

Remark: This depends only of the polynomial system f1, . . . , fs and the field
k, not on the field k1. Indeed, we have:

for any field k0 such that k ⊂ k0 ⊂ k1, Vk0(f1, . . . , fs) = Vk1(f1, . . . , fs)∩kn
0
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Affine variety over field extensions (example)

Algebraic numbers: Let Q ( C, be the algebraic closure of Q (Q is called the
field of algebraic numbers):

Q := {α ∈ C, such that ∃P ∈ Q[X], P (α) = 0},

→ Cf. Lecture II

Example: Let f1 = (XY )2 + Y and f2 = (Y − 1)(Y 2 − 2) a system of 2
equations.

Over Q: {Y = 1} is solution of f2, but f1(X, 1) = X2 + 1 has no solutions,
hence VQ(f1, f2) = ∅ .

Over k1 = Q(i): Vk1(f1, f2) = {(i, 1), (−i, 1)},

Over k2 = Q(
√√

2): Vk2(f1, f2) = {(±
√

2
2 ,

√√
2)}

Over k3 = Q(
√√

2, i): Vk3(f1, f2) = Vk2(f1, f2) ∪Vk1(f1, f2)
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Affine variety of an ideal

• let I = 〈f1, . . . , fs〉 an ideal of k[X1, . . . , Xn]

• for all f ∈ I and field extension k1|k: Vk1(f1, . . . , fs) ⊂ Vk1(f).

• If 〈g1, . . . , gt〉 = 〈f1, . . . , fs〉, then Vk1(f1, . . . , fs) = Vk1(g1, . . . , gt).

• ⇒ Vk1(f1, . . . , fs) depends only on the ideal I: we denote
Vk1(I) = Vk1(f1, . . . , fs).

Ideals of k[X1, . . . , Xn] → Affine varieties defined over k

I 7→ Vk1(I) ⊂ kn
1

Porperties:

• V( . ) is decreasing: I ⊂ J ⇒ V(J) ⊂ V(I).

• If 1 ∈ I, then V(I) = ∅ (1 has no solution)

• V( . ) is not one-one: VC((X − 1)2) = VC(X − 1) = {1}, but
〈(X − 1)2〉 ( 〈X − 1〉.
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Ideal of a set. Field of definition of a variety

• Let S ⊂ kn

Ik(S) := {f ∈ k[X1, . . . , Xn] | f(x1, . . . , xn) = 0, ∀(x1, . . . , xn) ∈ S}.

This is an ideal of k[X1, . . . , Xn] the vanishing ideal of S.

• Let V ⊂ kn be an affine variety.

⇐⇒ ∃I ⊂ k[X1, . . . , Xn] ideal, such that V = Vk(I).

Let k0 be the smallest field such that:

∃g1, . . . , gs ∈ k0[X1, . . . , Xn], and 〈g1, . . . , gs〉 = I.

Definition 2 The field k0 is called the field of definition of V .

It follows that V is defined over k0.

Example: n = 1. The field of definition of {
√

2} is Q(
√

2). But the field of
definition of {±

√
2} is Q.
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Properties of vanishing ideals

Affine varieties (defined over k0) → Ideals of k0[X1, . . . , Xn]

V 7→ I(V )

• Do not care too much about the field k where is V ⊂ kn. . .

• What is important is its field of definition k0.

• I( . ) is a decreasing map: V ⊂W ⇒ I(W ) ⊂ I(V ).

Lemma 1 Given an ideal I ⊂ k[X1, . . . , Xn], holds: I ⊂ I(V(I)) (not equal
in general).

Proof:(on the blackboard, with examples . . . )

Lemma 2 Let V and W be 2 affine varieties, then: V ⊂W ⇔ I(W ) ⊂ (V ).
It follows that the map I( . ) is one-one: V 6= W ⇒ I(V ) 6= I(W )

Proof:(on the blackboard)
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Elimination ideal

Let S ⊂ kn.

For ` = 1, . . . , n− 1, and s = (s1, . . . , sn) ∈ S let π`(s) := (s`+1, . . . , sn).

π`(S) := {π`(s), s ∈ S} → projection that eliminates the first ` coordinates.

! If V is an affine variety, then π`(V ) is not an affine variety in general.

Definition 3 Let I ⊂ k[X1, . . . , Xn] be an ideal. Let 0 ≤ ` ≤ n− 1.

`-th elimination ideal of I: E`(I) := I ∩ k[X`+1, . . . , Xn]

E0(I) = I, E`+1(I) = E1(E`(I)) (E1(.) eliminates the first variable).

Lemma 3 Let V = V(I) the affine variety defined by the ideal
I ⊂ k[X1, . . . , Xn]. The inclusion π`(V ) ⊂ V(E`(I)) holds.

Proof:(on the balckboard, with counterexamples to equality)
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Elimination theorem

Theorem 1 Let ≺ be the monomial order lex(X1, . . . , Xn), and
I ⊂ k[X1, . . . , Xn] an ideal.

Let G be a Gröbner basis of I for ≺.

Define for 0 ≤ ` ≤ n− 1 the set G` = G ∩ k[X`+1, . . . , Xn].

Then 〈G`〉 = E`(I) (= I ∩ k[X`+1, . . . , Xn]).

Important remark:

Let I = 〈A,B〉 ⊂ k[X, Y ]→ system of 2 polynomials A,B, 2 unknowns X, Y .

Then E1(I) = I ∩ k[Y ] verifies: E1(I) = 〈ResX(A,B)〉

→ Lex. GB. generalizes resultants.
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Basic solving

Fact: x �lex y �lex z Gröbner bases eliminate variables; it looks like:

x

8

>

>

>

<

>

>

>

:

gs(z, y)xcs + · · ·xcs−1 + · · · terms of deg(x) < cs − 1

. . .
... .

gt(z, y)xct + · · · terms of deg(x) < ct .

G1 y

8

>

>

>

>

<

>

>

>

>

:

... .

gu(z)ycu + · · · terms of deg(y) < cu

. . . .

G2 z

8

>

>

>

<

>

>

>

:

zc` + · · · zc`−1 + · · · terms of deg(z) < c`

. . .
... .

zc1 + · · · terms of deg(z) < c1
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Basic solving

Fact: x �lex y �lex z Gröbner bases eliminate variables; it looks like:

x

8

>

>

>

<

>

>

>

:

gs(z, y)xcs + · · ·xcs−1 + · · · terms of deg(x) < cs − 1

. . .
... .

gt(z, y)xct + · · · terms of deg(x) < ct .

G1 y

8

>

>

>

>

<

>

>

>

>

:

... .

gu(z)ycu + · · · terms of deg(y) < cu

. . . .

G2 z
n

zc1 + · · · terms of deg(z) < c1

G2 = G ∩ k[z]⇒ G2 can be generated by one polynomial

10



Basic solving

Fact: x �lex y �lex z Gröbner bases eliminate variables; it looks like:

x

8

>

>

>

<

>

>

>

:

gs(z, y)xcs + · · ·xcs−1 + · · · terms of deg(x) < cs − 1

. . .
... .

gt(z, y)xct + · · · terms of deg(x) < ct .

G1 y

8

>

>

>

>

<

>

>

>

>

:

... .

gu(z)ycu + · · · terms of deg(y) < cu

. . . .

Case E2(I) = I ∩ k[z] = 〈0〉 ⇒ G2 = ∅
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Basic solving

Strategy:

• Solving univariate polynomials only:

first, in z

second, in y

third, in x

• finding roots of univariate polynomials:

efficient numerical algorithm (like Newton-Raphson or another).

Remark: In practice, works well if the Gröbner basis is “purely” triangular,

one polynomial in x xc + fc−1(z, y)xc−1 + · · ·

one polynomial in y yb + gb−1(z)yb−1 + · · ·

one polynomial in z za + ha−1z
a−1 + · · ·

and there are no multiplicities. . .
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Extension theorem (on a toy example)

The problem: -4 -2 2 4

-4

-2

2

4

projection−−−−−−→

Projection Π1HVL

-4 -2 2 4

-4

-2

2

4

f(x, y) = yx− 1 is a Gröbner basis of I = 〈f〉 for lex(y, x).

Clearly, E1(I) = 〈f〉 ∩ k[x] = 〈0〉. VC(E1(I)) = C.

But π1(V ) = C− {0} ⇒ π1(V )  V(E1(I)) ⇒ 0 is a useless solution.

Let us write f(x, y) = a1(x)y + a0(x), a1(x) = x, and a0(x) = −1.

We have that 0 is a root of a1(x) = x. We have V(E1(I)) = π1(V ) ∪V(a1) .
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Extension theorem (in general)

Generalization: Let I = 〈f1, . . . , fs〉 ⊂ k[X1, . . . , Xn].

Let E1(I) = I ∩ k[X2, . . . , Xn] (1st elimination ideal of I, eliminate X1)

We write:
∀ 1 ≤ i ≤ s, fi = ai(X2, . . . , Xn)X1

Ni + · · · terms of degree in X1 < Ni,

where ai 6= 0.

Let (x2, . . . , xn) ∈ Vk̄(E1(I)) be a partial solution.

Theorem 2 Suppose that (x2, . . . , xn) 6∈ Vk̄(a1, . . . , as).

Then there exists x1 ∈ k̄ such that the partial solution can be extended to a
whole solution (x1, . . . , xn) ∈ V = Vk̄(I).

⇐⇒
(
(x2, . . . , xn) 6∈ Vk(a1, . . . , as)⇒ (x2, . . . , xn) ∈ π1(V )

)
⇐⇒ Vk(E1(I)) = π1(V ) ∪Vk(a1, . . . , as)
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Extension theorem (3 comments)

• The equality Vk(E1(I)) = π1(V ) ∪Vk(a1, . . . , as) is true only over an

algebraically closed field (like C) → we used k and not k

• Link with resultant: (Lect. VI, Part 2, Prop. 3)

A(X, Y ) = am(X)Y m + am−1(X)Y m−1 + · · · + a1(X)Y + a0(X)

B(X, Y ) = bn(X)Y n + bn−1(X)Y n−1 + · · · + b1(X)Y + b0(X)

Let r(X) = ResY (A,B), the resultant that eliminates Y .

x ∈ k, r(x) = 0 ⇐⇒
(
∃y ∈ k,A(x, y) = B(x, y) = 0 or am(x) = bn(x) = 0

)
⇐⇒ Vk(E1(A,B)) = Vk(r) = π1(V )∪Vk(am, bn) , with ∪ disjoint.

• !! In Theorem 2, the union ∪ is not disjoint in general. !!

But, the union ∪ is disjoint if f1, . . . , fs is a lex GB. (Proof: points in
V(a1, . . . , as) are solutions at the infinity. . . requires projective tools. . . )
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Weak Nullstellensatz

Fundamental Theorem of Algebra: Any non-constant polynomial
P (X) ∈ C[X] has at least one root.

P is not constant ⇐⇒
(
1 6∈ 〈P 〉 ⊂ C[X]

)
P has at least one root ⇐⇒ VC(P ) 6= ∅.

Weak Nullstellensatz: Let f1, . . . , fs be a polynomial system in C[X1, . . . , Xn].

Theorem 3 1 6∈ 〈f1, . . . , fs〉 ⇐⇒ V(f1, . . . , fs) 6= ∅

Or, the polynomial system f1 . . . , fs has a solution if and only if the ideal
〈f1, . . . , fs〉 has no constant.
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Nullstellensatz (1/2): radical ideal

Let I ⊂ k[X1, . . . , Xn] be an ideal.

Lemma 1 says that I ⊂ I(V(I)). . . What is I(V(I)) ?

Definition 4
√

I := {f ∈ k[X1, . . . , xn] such that ∃n ∈ N , fn ∈ I} This is
an ideal, called the radical of I.

For any ideal J , always holds J ⊂
√

J . An ideal J is radical, if
√

J = J .

Remark: Let f ∈ k[X] a polynomial.

It has a unique factorization, that is, there exist irreducible polynomials (Cf.
Lect. II, Definition 5) P1, . . . , Ps ∈ k[X] such that:

f = P e1
1 . . . P es

s .

The exponent ei ∈ N is called the multiplicity of Pi.

Check that:
√
〈f〉 = 〈P1 . . . Ps〉 (this is the squarefree part of f).
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Nullstellensatz (2/2)

Theorem 4 Let I be an ideal of k[X1, . . . , Xn] over an algebraically closed

field k (like k = C). We have I(V(I)) =
√

I .

Proof:(on the blacboard. . . )

Comments:

• True over C, not true over R.

• The radical
√

I is difficult to compute in general.

• But, it is easy to test if f ∈
√

I (when we know I = 〈f1, . . . , fs〉):

Rabinovitch’s trick: f ∈
√

I ⇐⇒ 1 ∈ 〈f1, . . . , fs, 1− Y f〉, (Y new variable).
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Irreducible varieties and prime ideals

Definition 5 V is irreducible if: V = V1 ∪ V2 ⇒ V = V1 or V = V2

V = V(x2 − y2) is not irreduiclbe because V = V(x− y) ∪V(x + y).

Prime ideal: (Lect. II, Def. 6) p is a prime ideal if xy ∈ p⇒ x ∈ p or y ∈ p.

Proposition 1 Let V ⊂ kn be an affine variety.

V is irred. ⇐⇒ I(V ) is a prime ideal .

Proof:(on the blackboard. . . )

Proposition 2 Any affine variety V is a finite union of irreducible
varieties. There exists irred. varieties V1, . . . , Vs such that:

V = V1 ∪ . . . ∪ Vs.

Proof:(It is an indiction proof, that uses the Noetherian property. . . )
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Corollary 1 Over an algebraically closed field k, any radical ideal I 6= 〈1〉
is a finite intersection of prime ideals: I = ∩s

i=1p1

Proof:(roughly, I = I(V ) = I(V1 ∪ · · · ∪ Vs) = I(V1) ∩ . . . ∩ I(Vs))

The algebra-geometry dictionnary

ALGEBRA GEOMETRY

k[X1, . . . , Xn] affine spaces kn
1 (k ⊂ k1)

Ideal I
Vk1 ( . )
−−−−−→ affine varieties Vk1(I) ⊂ kn

1

Radical ideals I =
√

I
I( . )←−−

Prime ideals p ←→ irreducible varieties

Elimination ideals E`(I) 99K Projection varieties π`(V )√
E`(I)

I( . )←−−
√

I ∩ J ←→ V(I) ∪V(J)
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