MMA 数学特論 I

Algorithms for polynomial systems：

 elimination \＆Gröbner bases多項式系のアルゴリズム：グレブナー基底 \＆消去法

Lecture VII：Elimination and Nullstellensatz
（summary of a full lesson given on the blackboard）July，1st，8th 2010.

Xavier Dahan

Review on: Elimination and the Nullstellensatz

All fields are infinite in this chapter

- $f_{1}, \ldots, f_{s} \subset k\left[X_{1}, \ldots, X_{n}\right]$ a polynomial system.
- k_{1} any field extension $k_{1} \mid k$,
- $\mathbf{V}_{k_{1}}\left(f_{1}, \ldots, f_{s}\right)$ the set of common solutions in k_{1} of the polynomials f_{i} :

$$
\begin{aligned}
\mathbf{V}_{k_{1}}\left(f_{1}, \ldots, f_{s}\right) & :=\left\{\left(x_{1}, \ldots, x_{n}\right) \in k_{1}^{n} \mid \forall 1 \leq i \leq s, \quad f_{i}\left(x_{1}, \ldots, x_{n}\right)=0\right\} \\
& =\mathbf{V}_{k_{1}}\left(f_{1}\right) \cap \cdots \cap \mathbf{V}_{k_{1}}\left(f_{s}\right)
\end{aligned}
$$

Definition 1 Such sets are called affine varieties defined over k.
Remark: This depends only of the polynomial system f_{1}, \ldots, f_{s} and the field k, not on the field k_{1}. Indeed, we have:
for any field k_{0} such that $k \subset k_{0} \subset k_{1}, \quad \mathbf{V}_{k_{0}}\left(f_{1}, \ldots, f_{s}\right)=\mathbf{V}_{k_{1}}\left(f_{1}, \ldots, f_{s}\right) \cap k_{0}^{n}$

Affine variety over field extensions (example)

Algebraic numbers: Let $\overline{\mathbb{Q}} \subsetneq \mathbb{C}$, be the algebraic closure of $\mathbb{Q}(\overline{\mathbb{Q}}$ is called the field of algebraic numbers):

$$
\overline{\mathbb{Q}}:=\{\alpha \in \mathbb{C}, \text { such that } \exists P \in \mathbb{Q}[X], P(\alpha)=0\}
$$

\rightarrow Cf. Lecture II
Example: Let $f_{1}=(X Y)^{2}+Y$ and $f_{2}=(Y-1)\left(Y^{2}-2\right)$ a system of 2 equations.

Over $\mathbb{Q}:\{Y=1\}$ is solution of f_{2}, but $f_{1}(X, 1)=X^{2}+1$ has no solutions, hence $\mathbf{V}_{\mathbb{Q}}\left(f_{1}, f_{2}\right)=\emptyset$.

Over $k_{1}=\mathbb{Q}(i)$:
Over $k_{2}=\mathbb{Q}(\sqrt{\sqrt{2}})$:
Over $k_{3}=\mathbb{Q}(\sqrt{\sqrt{2}}, i)$:

$$
\begin{array}{r}
\mathbf{V}_{k_{1}}\left(f_{1}, f_{2}\right)=\{(i, 1),(-i, 1)\}, \\
\mathbf{V}_{k_{2}}\left(f_{1}, f_{2}\right)=\left\{\left(\pm \frac{\sqrt{2}}{2}, \sqrt{\sqrt{2}}\right)\right\} \\
\mathbf{V}_{k_{3}}\left(f_{1}, f_{2}\right)=\mathbf{V}_{k_{2}}\left(f_{1}, f_{2}\right) \cup \mathbf{V}_{k_{1}}\left(f_{1}, f_{2}\right)
\end{array}
$$

Affine variety of an ideal

- let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ an ideal of $k\left[X_{1}, \ldots, X_{n}\right]$
- for all $f \in I$ and field extension $k_{1} \mid k: \mathbf{V}_{k_{1}}\left(f_{1}, \ldots, f_{s}\right) \subset \mathbf{V}_{k_{1}}(f)$.
- If $\left\langle g_{1}, \ldots, g_{t}\right\rangle=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, then $\mathbf{V}_{k_{1}}\left(f_{1}, \ldots, f_{s}\right)=\mathbf{V}_{k_{1}}\left(g_{1}, \ldots, g_{t}\right)$.
- $\Rightarrow \mathbf{V}_{k_{1}}\left(f_{1}, \ldots, f_{s}\right)$ depends only on the ideal I : we denote

$$
\mathbf{V}_{k_{1}}(I)=\mathbf{V}_{k_{1}}\left(f_{1}, \ldots, f_{s}\right) .
$$

Ideals of $k\left[X_{1}, \ldots, X_{n}\right] \rightarrow$ Affine varieties defined over k

$$
\begin{array}{lll}
I & \mapsto & \mathbf{V}_{k_{1}}(I) \subset k_{1}^{n}
\end{array}
$$

Porperties:

- $\mathbf{V}($.$) is decreasing:$
- If $1 \in I$, then $\mathbf{V}(I)=\emptyset$
- $\mathbf{V}($.$) is not one-one:$ $\left\langle(X-1)^{2}\right\rangle \subsetneq\langle X-1\rangle$.

$$
I \subset J \Rightarrow \mathbf{V}(J) \subset \mathbf{V}(I)
$$

(1 has no solution)
$\mathbf{V}_{\mathbb{C}}\left((X-1)^{2}\right)=\mathbf{V}_{\mathbb{C}}(X-1)=\{1\}$, but

Ideal of a set. Field of definition of a variety

- Let $S \subset k^{n}$

$$
\mathbf{I}_{k}(S):=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid f\left(x_{1}, \ldots, x_{n}\right)=0, \forall\left(x_{1}, \ldots, x_{n}\right) \in S\right\} .
$$

This is an ideal of $k\left[X_{1}, \ldots, X_{n}\right]$ the vanishing ideal of S.

- Let $V \subset k^{n}$ be an affine variety.
$\Longleftrightarrow \exists I \subset k\left[X_{1}, \ldots, X_{n}\right]$ ideal, such that $V=\mathbf{V}_{k}(I)$.
Let k_{0} be the smallest field such that:

$$
\exists g_{1}, \ldots, g_{s} \in k_{0}\left[X_{1}, \ldots, X_{n}\right], \text { and }\left\langle g_{1}, \ldots, g_{s}\right\rangle=I
$$

Definition 2 The field k_{0} is called the field of definition of V.
It follows that V is defined over k_{0}.
Example: $n=1$. The field of definition of $\{\sqrt{2}\}$ is $\mathbb{Q}(\sqrt{2})$. But the field of definition of $\{ \pm \sqrt{2}\}$ is \mathbb{Q}.

Properties of vanishing ideals

$$
\begin{array}{ccc}
\text { Affine varieties (defined over } \left.k_{0}\right) & \rightarrow & \text { Ideals of } k_{0}\left[X_{1}, \ldots, X_{n}\right] \\
V & \mapsto & \mathbf{I}(V)
\end{array}
$$

- Do not care too much about the field k where is $V \subset k^{n} \ldots$
- What is important is its field of definition k_{0}.
- $\mathbf{I}($.$) is a decreasing map: \quad V \subset W \Rightarrow \mathbf{I}(W) \subset \mathbf{I}(V)$.

Lemma 1 Given an ideal $I \subset k\left[X_{1}, \ldots, X_{n}\right]$, holds: $I \subset \mathbf{I}(\mathbf{V}(I)$) (not equal in general).

Proof:(on the blackboard, with examples ...)
Lemma 2 Let V and W be 2 affine varieties, then: $V \subset W \Leftrightarrow \mathbf{I}(W) \subset(V)$.
It follows that the $\operatorname{map} \mathbf{I}($.$) is one-one: V \neq W \Rightarrow \mathbf{I}(V) \neq \mathbf{I}(W)$
Proof:(on the blackboard)

Elimination ideal

Let $S \subset k^{n}$.
For $\ell=1, \ldots, n-1$, and $s=\left(s_{1}, \ldots, s_{n}\right) \in S$ let $\pi_{\ell}(s):=\left(s_{\ell+1}, \ldots, s_{n}\right)$.
$\pi_{\ell}(S):=\left\{\pi_{\ell}(s), s \in S\right\} \rightarrow$ projection that eliminates the first ℓ coordinates.
! If V is an affine variety, then $\pi_{\ell}(V)$ is not an affine variety in general.
Definition 3 Let $I \subset k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal. Let $0 \leq \ell \leq n-1$.
ℓ-th elimination ideal of $I: E_{\ell}(I):=I \cap k\left[X_{\ell+1}, \ldots, X_{n}\right]$
$E_{0}(I)=I, \quad E_{\ell+1}(I)=E_{1}\left(E_{\ell}(I)\right) \quad\left(E_{1}(\right.$.$\left.) eliminates the first variable \right)$.
Lemma 3 Let $V=\mathbf{V}(I)$ the affine variety defined by the ideal $I \subset k\left[X_{1}, \ldots, X_{n}\right]$. The inclusion $\pi_{\ell}(V) \subset \mathbf{V}\left(E_{\ell}(I)\right)$ holds.

Proof:(on the balckboard, with counterexamples to equality)

Elimination theorem

Theorem 1 Let \prec be the monomial order lex $\left(X_{1}, \ldots, X_{n}\right)$, and $I \subset k\left[X_{1}, \ldots, X_{n}\right]$ an ideal.

Let G be a Gröbner basis of I for \prec.
Define for $0 \leq \ell \leq n-1$ the set

$$
G_{\ell}=G \cap k\left[X_{\ell+1}, \ldots, X_{n}\right] .
$$

Then $\left\langle G_{\ell}\right\rangle=E_{\ell}(I) \quad\left(=I \cap k\left[X_{\ell+1}, \ldots, X_{n}\right]\right)$.
Important remark:
Let $I=\langle A, B\rangle \subset k[X, Y] \rightarrow$ system of 2 polynomials $A, B, 2$ unknowns X, Y.
Then $E_{1}(I)=I \cap k[Y]$ verifies:

$$
E_{1}(I)=\left\langle\operatorname{Res}_{X}(A, B)\right\rangle
$$

\rightarrow Lex. GB. generalizes resultants.

Basic solving

Fact: $x \succ_{\text {lex }} y \succ_{\text {lex }} z$ Gröbner bases eliminate variables; it looks like:

$$
\begin{gathered}
x\left\{\begin{array}{c}
g_{s}(z, y) x^{c_{s}}+\cdots x^{c_{s}-1}+\cdots \text { terms of } \operatorname{deg}(x)<c_{s}-1 \\
\ddots \\
\vdots \\
g_{t}(z, y) x^{c_{t}}+\cdots \text { terms of } \operatorname{deg}(x)<c_{t}
\end{array}\right. \\
G_{1} \quad y\left\{\begin{array}{c}
\vdots \\
g_{u}(z) y^{c_{u}}+\cdots \text { terms of } \operatorname{deg}(y)<c_{u} \\
\ddots
\end{array}\right. \\
G_{2}\left\{\begin{array}{c}
z^{c_{\ell}}+\cdots z^{c_{\ell}-1}+\cdots \text { terms of } \operatorname{deg}(z)<c_{\ell} \\
\ddots \\
\vdots \\
z^{c_{1}}+\cdots \text { terms of } \operatorname{deg}(z)<c_{1}
\end{array}\right.
\end{gathered}
$$

Basic solving

Fact: $x \succ_{\text {lex }} y \succ_{\text {lex }} z$ Gröbner bases eliminate variables; it looks like:

$$
\left.\begin{array}{c}
x\left\{\begin{array}{c}
g_{s}(z, y) x^{c_{s}}+\cdots x^{c_{s}-1}+\cdots \text { terms of } \operatorname{deg}(x)<c_{s}-1 \\
\ddots \\
\vdots \\
g_{t}(z, y) x^{c_{t}}+\cdots \text { terms of } \operatorname{deg}(x)<c_{t}
\end{array}\right. \\
G_{1} \quad y\left\{\begin{array}{c}
\vdots \\
g_{u}(z) y^{c_{u}}+\cdots \text { terms of } \operatorname{deg}(y)<c_{u} \\
\ddots
\end{array}\right. \\
G_{2}
\end{array} \begin{array}{c}
z\left\{z^{c_{1}}+\cdots \text { terms of } \operatorname{deg}(z)<c_{1}\right.
\end{array}\right]
$$

$G_{2}=G \cap k[z] \Rightarrow G_{2}$ can be generated by one polynomial

Basic solving

Fact: $x \succ_{\text {lex }} y \succ_{\text {lex }} z$ Gröbner bases eliminate variables; it looks like:

$$
\begin{gathered}
x\left\{\begin{array}{c}
g_{s}(z, y) x^{c_{s}}+\cdots x^{c_{s}-1}+\cdots \text { terms of } \operatorname{deg}(x)<c_{s}-1 \\
\ddots \\
g_{t}(z, y) x^{c_{t}}+\cdots \text { terms of } \operatorname{deg}(x)<c_{t}
\end{array}\right. \\
G_{1} \quad y\left\{\begin{array}{c}
\\
g_{u}(z) y^{c_{u}}+\cdots \text { terms of } \operatorname{deg}(y)<c_{u} \\
\ddots
\end{array}\right.
\end{gathered}
$$

Case $E_{2}(I)=I \cap k[z]=\langle 0\rangle \Rightarrow G_{2}=\emptyset$

Basic solving

Strategy:

- Solving univariate polynomials only:
first, in z
second, in y
third, in x
- finding roots of univariate polynomials:
efficient numerical algorithm (like Newton-Raphson or another).
Remark: In practice, works well if the Gröbner basis is "purely" triangular, one polynomial in $x \quad x^{c}+f_{c-1}(z, y) x^{c-1}+\cdots$ one polynomial in y one polynomial in z

$$
\begin{array}{r}
y^{b}+g_{b-1}(z) y^{b-1}+\cdots \\
z^{a}+h_{a-1} z^{a-1}+\cdots
\end{array}
$$

and there are no multiplicities...

Extension theorem (on a toy example)

The problem:

$f(x, y)=y x-1$ is a Gröbner basis of $I=\langle f\rangle$ for lex (y, x).
Clearly, $E_{1}(I)=\langle f\rangle \cap k[x]=\langle 0\rangle$.

$$
\mathbf{V}_{\mathbb{C}}\left(E_{1}(I)\right)=\mathbb{C}
$$

But $\pi_{1}(V)=\mathbb{C}-\{0\} \Rightarrow \pi_{1}(V) \varsubsetneqq \mathbf{V}\left(E_{1}(I)\right) \quad \Rightarrow 0$ is a useless solution.
Let us write $f(x, y)=a_{1}(x) y+a_{0}(x), \quad a_{1}(x)=x$, and $a_{0}(x)=-1$.
We have that 0 is a root of $a_{1}(x)=x$. We have $\mathbf{V}\left(E_{1}(I)\right)=\pi_{1}(V) \cup \mathbf{V}\left(a_{1}\right)$.

Extension theorem (in general)

Generalization: Let $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset k\left[X_{1}, \ldots, X_{n}\right]$.
Let $E_{1}(I)=I \cap k\left[X_{2}, \ldots, X_{n}\right] \quad$ (1st elimination ideal of I, eliminate X_{1})
We write:
$\forall 1 \leq i \leq s, f_{i}=a_{i}\left(X_{2}, \ldots, X_{n}\right) X_{1} N_{i}+\cdots$ terms of degree in $X_{1}<N_{i}$, where $a_{i} \neq 0$.

Let $\left(x_{2}, \ldots, x_{n}\right) \in \mathbf{V}_{\bar{k}}\left(E_{1}(I)\right)$ be a partial solution.
Theorem 2 Suppose that $\left(x_{2}, \ldots, x_{n}\right) \notin \mathbf{V}_{\bar{k}}\left(a_{1}, \ldots, a_{s}\right)$.
Then there exists $x_{1} \in \bar{k}$ such that the partial solution can be extended to a whole solution $\left(x_{1}, \ldots, x_{n}\right) \in V=\mathbf{V}_{\bar{k}}(I)$.
$\Longleftrightarrow\left(\left(x_{2}, \ldots, x_{n}\right) \notin \mathbf{V}_{\bar{k}}\left(a_{1}, \ldots, a_{s}\right) \Rightarrow\left(x_{2}, \ldots, x_{n}\right) \in \pi_{1}(V)\right)$
$\Longleftrightarrow \quad \mathbf{V}_{\bar{k}}\left(E_{1}(I)\right)=\pi_{1}(V) \cup \mathbf{V}_{\bar{k}}\left(a_{1}, \ldots, a_{s}\right)$

Extension theorem (3 comments)

- The equality $\mathbf{V}_{\bar{k}}\left(E_{1}(I)\right)=\pi_{1}(V) \cup \mathbf{V}_{\bar{k}}\left(a_{1}, \ldots, a_{s}\right)$ is true only over an algebraically closed field (like \mathbb{C})
\rightarrow we used \bar{k} and not k
- Link with resultant: (Lect. VI, Part 2, Prop. 3)

$$
\begin{aligned}
& A(X, Y)=a_{m}(X) Y^{m}+a_{m-1}(X) Y^{m-1}+\cdots+a_{1}(X) Y+a_{0}(X) \\
& B(X, Y)=b_{n}(X) Y^{n}+b_{n-1}(X) Y^{n-1}+\cdots+b_{1}(X) Y+b_{0}(X)
\end{aligned}
$$

Let $r(X)=\operatorname{Res}_{Y}(A, B)$, the resultant that eliminates Y.
$x \in \bar{k}, r(x)=0 \Longleftrightarrow\left(\exists y \in \bar{k}, A(x, y)=B(x, y)=0 \quad\right.$ or $\left.a_{m}(x)=b_{n}(x)=0\right)$
$\Longleftrightarrow \mathbf{V}_{\bar{k}}\left(E_{1}(A, B)\right)=\mathbf{V}_{\bar{k}}(r)=\pi_{1}(V) \cup \mathbf{V}_{\bar{k}}\left(a_{m}, b_{n}\right), \quad$ with \cup disjoint.

- !! In Theorem 2, the union \cup is not disjoint in general.

But, the union \cup is disjoint if f_{1}, \ldots, f_{s} is a lex GB. (Proof: points in $\mathbf{V}\left(a_{1}, \ldots, a_{s}\right)$ are solutions at the infinity...requires projective tools...)

Weak Nullstellensatz

Fundamental Theorem of Algebra: Any non-constant polynomial $P(X) \in \mathbb{C}[X]$ has at least one root.
P is not constant $\Longleftrightarrow(1 \notin\langle P\rangle \subset \mathbb{C}[X])$
P has at least one root $\Longleftrightarrow \mathbf{V}_{\mathbb{C}}(P) \neq \emptyset$.
Weak Nullstellensatz: Let f_{1}, \ldots, f_{s} be a polynomial system in $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
Theorem $3 \quad 1 \notin\left\langle f_{1}, \ldots, f_{s}\right\rangle \Longleftrightarrow \mathbf{V}\left(f_{1}, \ldots, f_{s}\right) \neq \emptyset$
Or, the polynomial system $f_{1} \ldots, f_{s}$ has a solution if and only if the ideal $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ has no constant.

Nullstellensatz (1/2): radical ideal

Let $I \subset k\left[X_{1}, \ldots, X_{n}\right]$ be an ideal.
Lemma 1 says that $I \subset \mathbf{I}(\mathbf{V}(I)) \ldots$
What is $\mathbf{I}(\mathbf{V}(I))$?
Definition $4 \sqrt{I}:=\left\{f \in k\left[X_{1}, \ldots, x_{n}\right]\right.$ such that $\left.\exists n \in \mathbb{N}, f^{n} \in I\right\}$ This is an ideal, called the radical of I.
For any ideal J, always holds $J \subset \sqrt{J}$. An ideal J is radical, if $\sqrt{J}=J$.
Remark: Let $f \in k[X]$ a polynomial.
It has a unique factorization, that is, there exist irreducible polynomials (Cf.
Lect. II, Definition 5) $P_{1}, \ldots, P_{s} \in k[X]$ such that:

$$
f=P_{1}^{e_{1}} \ldots P_{s}^{e_{s}} .
$$

The exponent $e_{i} \in \mathbb{N}$ is called the multiplicity of P_{i}.
Check that: $\sqrt{\langle f\rangle}=\left\langle P_{1} \ldots P_{s}\right\rangle$
(this is the squarefree part of f).

Nullstellensatz (2/2)

Theorem 4 Let I be an ideal of $k\left[X_{1}, \ldots, X_{n}\right]$ over an algebraically closed field k (like $k=\mathbb{C}$). We have $\mathbf{I}(\mathbf{V}(I))=\sqrt{I}$.

Proof:(on the blacboard...)
Comments:

- True over \mathbb{C}, not true over \mathbb{R}.
- The radical \sqrt{I} is difficult to compute in general.
- But, it is easy to test if $f \in \sqrt{I}$ (when we know $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$):

Rabinovitch's trick: $f \in \sqrt{I} \Longleftrightarrow 1 \in\left\langle f_{1}, \ldots, f_{s}, 1-Y f\right\rangle$, (Y new variable).

Irreducible varieties and prime ideals

Definition $5 V$ is irreducible if: $\quad V=V_{1} \cup V_{2} \Rightarrow V=V_{1}$ or $V=V_{2}$
$V=\mathbf{V}\left(x^{2}-y^{2}\right)$ is not irreduiclbe because $V=\mathbf{V}(x-y) \cup \mathbf{V}(x+y)$.
Prime ideal: (Lect. II, Def. 6) \mathfrak{p} is a prime ideal if $x y \in \mathfrak{p} \Rightarrow x \in \mathfrak{p}$ or $y \in \mathfrak{p}$.
Proposition 1 Let $V \subset k^{n}$ be an affine variety.
V is irred. $\Longleftrightarrow \mathbf{I}(V)$ is a prime ideal.
Proof:(on the blackboard...)
Proposition 2 Any affine variety V is a finite union of irreducible varieties. There exists irred. varieties V_{1}, \ldots, V_{s} such that:

$$
V=V_{1} \cup \ldots \cup V_{s}
$$

Proof:(It is an indiction proof, that uses the Noetherian property...)

Corollary 1 Over an algebraically closed field k, any radical ideal $I \neq\langle 1\rangle$ is a finite intersection of prime ideals:

PROOF: $\left(\right.$ roughly, $\left.I=\mathbf{I}(V)=\mathbf{I}\left(V_{1} \cup \cdots \cup V_{s}\right)=\mathbf{I}\left(V_{1}\right) \cap \ldots \cap \mathbf{I}\left(V_{s}\right)\right)$
The algebra-geometry dictionnary

ALGEBRA
$k\left[X_{1}, \ldots, X_{n}\right]$
Ideal $I \quad \xrightarrow{\mathbf{V}_{k_{1}}(.)}$
Radical ideals $I=\sqrt{I} \quad \stackrel{\mathbf{I}(.)}{\rightleftarrows}$
Prime ideals $\mathfrak{p} \quad \longleftrightarrow \quad$ irreducible varieties
Elimination ideals $E_{\ell}(I) \quad--$

$$
\sqrt{E_{\ell}(I)} \quad \stackrel{\mathbf{I}(.)}{\rightleftarrows}
$$

$$
\sqrt{I \cap J} \quad \longleftrightarrow \quad \mathbf{V}(I) \cup \mathbf{V}(J)
$$

