MMA 数学特論 I。多項式系のアルゴリズム：グレブナー基底 \＆消去法
\qquad

Practice test V：Elimination and Nullstellensatz

－！！！Another part of the test is to do directly in Mathematica ！！！
Exercise 1 （radical ideal）We defined the radical of an ideal for a polynomial algebra （Lect．VII，Def．4）．But the definition is the same over any ring R ：

$$
\text { for } I \text { ideal of } R, \quad \sqrt{I}=\left\{x \in R \mid \exists n \in \mathbb{N}, x^{n} \in I\right\} .
$$

Question 1 Show that \sqrt{I} is an ideal of R（for a definition Lect．II，Def．3）
Answer：

Question 2 Given two ideals I and J of R ，we know that $I \cap J$ is an ideal of R ． Show that $\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$ ．
Answer：

Exercise 2 （Don＇t use a computer：computations are easy）Consider the fol－ lowing polynomial system：

$$
\begin{aligned}
x^{2}+2 y^{2} & =3 \\
x^{2}+x y+y^{2} & =3
\end{aligned}
$$

Question 1 Find all the solution in \mathbb{C}^{2} (write the computations you did briefly) Answer:

Question 2 Write down the solutions in \mathbb{Q}^{2}. What is the smallest field containing all the solutions?

Answer:

Exercise 3 The aim of this exercise is to show that given a point $a=\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$ for a field k, the vanishing ideal $\mathbf{I}_{k}(\{a\}) \subset k\left[X_{1}, \ldots, X_{n}\right]$ is equal to $\left\langle X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right\rangle$

Question 1 Show that the polynomials $P_{i}\left(X_{1}, \ldots, X_{n}\right)=X_{i}-a_{i}$ are all in $\mathbf{I}_{k}(\{a\})$ for $i=1, \ldots, n$.

Answer:

Question 2 Let $f \in \mathbf{I}_{k}(\{a\})$. Choose a monomial order \prec on the monomials in X_{1}, \ldots, X_{n}. What is $\operatorname{Lt}_{\prec}\left(P_{i}\right)$?

Answer:

Question 3 Let r be the remainder of the division of f by the sequence $\left[P_{1}, \ldots, P_{n}\right]$. Prove that r is a constant.

Answer:

Question 4 Show that $r=0$ is the only possibility. Deduce that $\left\{P_{1}, \ldots, P_{n}\right\}$ is a (Gröbner) basis of $\mathbf{I}_{k}(\{a\})$.

Answer:

