Practice test V: Elimination and Nullstellensatz

• !!! Another part of the test is to do directly in Mathematica !!!

Exercise 1 (radical ideal) We defined the radical of an ideal for a polynomial algebra (Lect. VII, Def. 4). But the definition is the same over any ring R:

for *I* ideal of *R*, $\sqrt{I} = \{x \in R \mid \exists n \in \mathbb{N}, x^n \in I\}.$

Question 1 Show that \sqrt{I} is an ideal of R (for a definition Lect. II, Def. 3) <u>Answer:</u>

Question 2 Given two ideals I and J of R, we know that $I \cap J$ is an ideal of R. Show that $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$. Answer:

Exercise 2 (Don't use a computer: computations are easy) Consider the following polynomial system:

Question 1 Find all the solution in \mathbb{C}^2 (write the computations you did briefly) <u>Answer:</u>

Question 2 Write down the solutions in \mathbb{Q}^2 . What is the smallest field containing all the solutions ?

Answer:

Exercise 3 The aim of this exercise is to show that given a point $a = (a_1, \ldots, a_n) \in k^n$ for a field k, the vanishing ideal $\mathbf{I}_k(\{a\}) \subset k[X_1, \ldots, X_n]$ is equal to $\langle X_1 - a_1, \ldots, X_n - a_n \rangle$

Question 1 Show that the polynomials $P_i(X_1, \ldots, X_n) = X_i - a_i$ are all in $\mathbf{I}_k(\{a\})$ for $i = 1, \ldots, n$. Answer:

Question 2 Let $f \in \mathbf{I}_k(\{a\})$. Choose a monomial order \prec on the monomials in X_1, \ldots, X_n . What is $\operatorname{LT}_{\prec}(P_i)$? Answer:

Question 3 Let r be the remainder of the division of f by the sequence $[P_1, \ldots, P_n]$. Prove that r is a constant.

<u>Answer:</u>

Question 4 Show that r = 0 is the only possibility. Deduce that $\{P_1, \ldots, P_n\}$ is a (Gröbner) basis of $\mathbf{I}_k(\{a\})$.

Answer: