MMA 数学特論 I。多項式系のアルゴリズム：グレブナー基底 \＆消去法
\qquad

Practice test IV：Resultant

－You can use any theorem，proposition or corollary of the class lectures，just by citing its number inside the corresponding lecture：（example：＂Lect II，Cor．1＂refers to the Corollary 1 of Lecture II，that is the Primitive Element Theorem）．

Exercise 1 Write the Sylvester matrix of the polynomials A and B ：

A	$2 x^{2}+x-1$	$x-1$	$x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$
B	$30 x^{3}+6 x^{2}+x+1$	$x+1$	3

Exercise 2 Question 1 Are the following matrices in row echelon form？（the empty entries mean zero）

$$
A_{1}=\left(\begin{array}{ccccc}
4 & 1 & -1 & 1 & 0 \\
& & 4 & 1 & 1 \\
& & 1 & 0 & 0 \\
& & & &
\end{array}\right) \quad A_{2}=\left(\begin{array}{cccccc}
1 & 1 & -1 & 3 & 1 & 0 \\
& & 2 & 3 & -2 & -3 \\
& & & -1 & -2 & 3 \\
& & & & & 2 \\
& & & & &
\end{array}\right)
$$

Exercise 3 Consider the 2 polynomials A and B ，

$$
A=2 x^{2}+x-1 \quad B=30 x^{3}+6 x^{2}+x+1 .
$$

We have $\operatorname{Res}(A, B)=812$ ．
Given $n \in \mathbb{N}^{\star}$ ，we consider the map $\phi_{n}: \mathbb{Z}[X] \rightarrow \mathbb{Z} / n \mathbb{Z}[X], \sum_{i} a_{i} X^{i} \mapsto \sum_{i}\left(a_{i} \bmod \right.$ n）X^{i} ．
Question 1 Use Proposition 1 to compute：
$r_{5}=\operatorname{Res}\left(\phi_{5}(A), \phi_{5}(B)\right)=\operatorname{Res}(A \bmod 5, B \bmod 5)$
$r_{3}=\operatorname{Res}\left(\phi_{3}(A), \phi_{3}(B)\right)=\operatorname{Res}(A \bmod 3, B \bmod 3)$
Question 2 Can we use Proposition 2 to compute $r_{2}=\operatorname{Res}\left(\phi_{2}(A), \phi_{2}(B)\right)=\operatorname{Res}(A \bmod$ $2, B \bmod 2) ?$ Compute anyway r_{2} ．

Exercise 4 Let R be an integral domain（Lect．II，Def．7．．．like $R=\mathbb{Z}$ or $R=k[X, Y]$ ） Let $A, B, C \in R[X]$ ．Show the formula：

$$
\operatorname{Res}(A B, C)=\operatorname{Res}(A, C) \operatorname{Res}(B, C)
$$

（advice：use the formulas of Theorem 1，Slide 9）

Exercise 5 Consider the algebraic numbers $\alpha=(i+\sqrt{2})^{\frac{1}{7}}+(i+\sqrt{2})^{\frac{3}{7}}+(i+\sqrt{2})^{\frac{5}{7}}+1$, and $\beta=\left(\sqrt{2}+3^{\frac{1}{3}}\right)^{2}+\sqrt{1+3^{\frac{1}{3}}}$.

The aim of this exercise is to compute a vanishing polynomial p_{α} of α and a vanishing polynomial p_{β} of β. Finally to compute $p_{\alpha \beta}$, a vanishing polynomial of the product $\alpha \beta$. Question 1 Let $\alpha_{1}=i+\sqrt{2}$. Compute a vanishing polynomial $p_{\alpha_{1}}$ of α_{1}. Deduce one for $\alpha_{2}=\alpha^{\frac{1}{7}}$.
Question 2 Show that there exists a polynomial h such that $\alpha=h\left(\alpha_{2}\right)$. Use the resultant (Part II notes, $\mathrm{n}^{\circ} 2$) to compute p_{α}.
Question 3 Compute a vanishing polynomial of $1+3^{\frac{1}{3}}$. Deduce one for $\sqrt{1+3^{\frac{1}{3}}}$.
Question 4 Use the resultant to compute a vanishing polynomial of $\beta_{1}=\sqrt{2}+3^{\frac{1}{3}}$. Deduce one for $\beta_{2}=\beta_{1}^{2}$.
Question 5 Use the resultant to compute p_{β}.
Question 6 Use the resultant to compute $p_{\alpha \beta}$.

