\qquad

Practice test：Division equality and monomial ideals

－You can use any theorem，proposition or corollary of the class lectures，just by citing its number inside the corresponding lecture：（example：＂Lect II，Cor．1＂refers to the Corollary 1 of Lecture II，that is the Primitive Element Theorem）．
－the answers are usually short．Write them directly on this sheet of paper．
Exercise 1 Consider the division of $f=x^{2} y+x y^{2}+y^{2}$ by the sequence $\left[f_{1}=x y-1, f_{2}=\right.$ $\left.y^{2}-1\right]$ for the order $y \prec_{\text {lex }} x$（Exercise 5 of Handout 4）：

$$
f=(x+y) f_{1}+1 . f_{2}+x+y+1
$$

hence，$a_{1}=x+y, a_{2}=1$ and $r=x+y+1$ with the standard notations of the Lecture．
Question 1：Plot on the left－hand graphic below the associated Δ－sets Δ_{1}, Δ_{2} and $\bar{\Delta}$ associated to $\left[f_{1}, f_{2}\right]$ ．

Question 2：For each monomial $m=x^{\alpha_{1}} y^{\alpha_{2}}$ occurring in a_{1} ，plot a \bullet on the point of coordinates $\operatorname{mdeg}\left(f_{1}\right)+\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}^{2}$ on the graphic．Then，plot a on the point of coordinates $\operatorname{mdeg}\left(f_{2}\right)+\left(\beta_{1}, \beta_{2}\right) \in \mathbb{N}^{2}$ for each monomials $x^{\beta_{1}} y^{\beta_{2}}$ occurring in a_{2} ，and finally put a for the monomials occurring in r ．

Check the conclusion of Proposition 6.
Question 3：The division of f by the sequence $\left[f_{2}, f_{1}\right]$ gives a different result．We found $f=(x+1) f_{2}+x f_{1}+2 x+1$ ．
Let us write $a_{1}^{\prime}:=x+1, a_{2}^{\prime}=x$ and $r^{\prime}=2 x+1$ ．On the right－hand graphic above，plot the Δ－sets $\Delta_{1}^{\prime}, \Delta_{2}^{\prime}$ and $\bar{\Delta}^{\prime}$ ，corresponding to the sequence $\left[f_{2}, f_{1}\right]$ ．

For each monomials $x^{\alpha_{1}} y^{\alpha_{2}}$ occurring in a_{1}^{\prime}（respectively，in a_{2}^{\prime} and in r^{\prime} ）plot the point of coordinates $\operatorname{mdeg}\left(f_{2}\right)+\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}^{2}$（respectively of coordinates $\operatorname{mdeg}\left(f_{1}\right)+\left(\alpha_{1}, \alpha_{2}\right)$ ， and of corrdinates $\left(\alpha_{1}, \alpha_{2}\right)$ ）using a $\bullet($ respectively a \bullet ，and a $\bullet)$ ．

Again, check the conclusion of Proposition 6.
Question 4: On the right-hand graphic above, with a pen of different color, draw the Δ-sets Δ_{1} and Δ_{2} (the ones that you have drawn on the left-hand graphic).

Suppose now that the division of f by $\left[f_{2}, f_{1}\right]$ would be $\left[a_{2}, a_{1}\right]$ and r (i.e. $a_{1}^{\prime}=$ $a_{2}, a_{2}^{\prime}=a_{1}, r^{\prime}=r$ with the notations above, which is not true, just a supposition). Using Proposition 6, and the right-hand graphic, why this is not possible ?
Answer:

Exercise 2: In the Exercise 5 of the "Practical test" of May 20th, was considered the following polynomials:

$$
f=x^{3} y^{2}-x^{2} y^{3}+1+x^{2} y^{4}+x^{4}-y+x^{4} y+x^{5} y+x^{4} y^{3},
$$

and $f_{1}=x^{3} y^{2}+x^{4}, f_{2}=x^{2} y^{3}-1$.
Question 1: Plot the Δ-sets corresponding to the division of f by $\left[f_{1}, f_{2}\right]$.
For the grevlex (x, y) monomial order, the division of f by $\left[f_{1}, f_{2}\right]$ gave: $f=b_{1} f_{1}+$ $b_{2} f_{2}+s$, with $b_{1}=(x y+1), b_{2}=(y-1)$ and the remainder $s=x^{4} y$. Put the monomials on the left-hand side graphic below, in the same way it was asked in the previous exercise (use the marks \bullet, and \bullet).

Question 2: Repeat Question 4 of Exercise 1 (i.e. (1) on the left-hand side graphic above, plot the Δ-sets, Δ_{1}^{\prime} ad Δ_{2}^{\prime} corresponding to the sequence $\left[f_{2}, f_{1}\right]$, with a pen of different color. (2) assume that $\left[b_{2}, b_{1}\right], s$ will be the division, so that the monomials are already plotted, by Question 1. (3) find a contradiction with Proposition 6. (4) check with Exercice 5 of Practice test 1)
Answer:

Question 3: Same question for the lex (x, y) monomial order. Why this shows that the
division of f by $\left[f_{1}, f_{2}\right]$ or $\left[f_{2}, f_{1}\right]$ will give the same division (as was computed in Exercise 5 of Practice test 1)?
Answer:

Exercise 3 Let f, f_{1}, f_{2} be three polynomials in $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, and \prec a monomial order. Let $\left[a_{1}, a_{2}\right], r$ (respectively $\left[a_{1}^{\prime}, a_{2}^{\prime}\right], r^{\prime}$) be the polynomials obtained by the division of f by $\left[f_{1}, f_{2}\right]$ (respectively by $\left[f_{2}, f_{1}\right]$).

When do we have $\left[a_{1}^{\prime}, a_{2}^{\prime}\right]=\left[a_{2}, a_{1}\right]$?
(advice 1: use Exercises 1 and 2.
advice 2: you need to find some conditions on the monomials occurring in a_{1} and a_{2}. For example, something starting like "Let X^{α} be a monomial occurring in a_{1}, and let $\alpha(1):=\operatorname{mdeg}_{\prec}\left(f_{1}\right) \in \mathbb{N}^{n}$. Then $\alpha+\alpha(1) \in$?? and/or $\alpha+\alpha(1) \notin$??...").
Answer:

Exercise 4 Corollary 2 of the Proposition 6, shows that the remainder r of a division by a sequence $\left[f_{1}, \ldots, f_{s}\right]$ depends linearly on the input polynomial f.

The proof shows that it is also true for each quotient $a_{i}, 1 \leq i \leq s$.
Hence we have the following $s+1$ endomorphisms of \mathbb{k}-vector spaces

$$
\begin{aligned}
\varphi_{i}: \mathbb{k}\left[X_{1}, \ldots, X_{n}\right] & \rightarrow \mathbb{k}\left[X_{1}, \ldots, X_{n}\right] \\
f & \mapsto a_{i}
\end{aligned} \quad \text { and } \quad \varphi: \mathbb{k}\left[X_{1}, \ldots, X_{n}\right] ~ \rightarrow \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]
$$

Question: Are these maps one-one (injective, i.e. with kernels reduced to \{0\}) ?
What are the images of these linear maps ? (advice: just give a monomial basis of these vector spaces)
Answer:

Exercise 5 Prove the Corollary 2 of Lecture IV.
Answer:

Exercise 6 We consider an ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subset \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$, and a monomial order \prec.
Question 1 One property of the division, is: $a_{i} \neq 0 \Rightarrow \operatorname{LM}_{\prec}\left(a_{i} f_{i}\right) \preceq \mathrm{LM}_{\prec}(f)$ (Lect. III, Slide 18 Property (c)).

Let $\mathcal{I}(f)=\left\{i \mid \operatorname{LM}_{\prec}\left(a_{i} f_{i}\right)=\operatorname{LM}_{\prec}(f)\right\}$. Show that $\mathcal{I}(f) \neq \emptyset$.
Answer:

Question 2 Then show that $\operatorname{LT}_{\prec}(f)=\sum_{i \in \mathcal{I}(f)} \operatorname{LT}\left(a_{i} f_{i}\right)$.
Answer:

Question 3 Sometimes, there exists $f \in I$ such that the remainder r of the division by the sequence $\left[f_{1}, \ldots, f_{s}\right]$ verifies $r \neq 0$.

Show that this is the case iff $\left\langle\operatorname{LM}\left(f_{1}\right), \ldots, \operatorname{LM}\left(f_{s}\right)\right\rangle \subsetneq\langle\operatorname{LM}(I)\rangle$.
Answer:

Exercise 7 Let $f \in \mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ be a non-zero polynomial, and $\langle f\rangle$ the ideal that it generates in $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$.

Show that $\{f\}$ is a Gröbner basis of $\langle f\rangle$ for any monomial order \prec.
Answer:

Why $\{f\}$ is also a minimal Gröbner basis and a reduced Gröbner basis ?

Answer:

Exercise 8 Let G_{1} and G_{2} be two minimal Gröbner bases of an ideal I in $\mathbb{k}\left[X_{1}, \ldots, X_{n}\right]$ with respect to a monomial order \prec.

We denote by $\operatorname{LM}(G)=\operatorname{LM}_{\prec}(G)=\left\{\operatorname{LM}_{\prec}(g): g \in G\right\}$. Show that $\operatorname{LM}\left(G_{1}\right)=\operatorname{LM}\left(G_{2}\right)$ (advice: Lemma 1 of Lect. IV will be useful)

Answer:

Exercise 9 Consider the following two polynomial systems F and H.

$$
F \left\lvert\, \begin{aligned}
& f_{1}=y^{2}-2 y+1 \\
& f_{2}=2+3 x+x^{2}-3 y+x y-5 y^{2}-3 x y^{2}
\end{aligned}\right.
$$

$$
H \left\lvert\, \begin{aligned}
& h_{1}=-1+3 y+x^{2} y+z-y z, \\
& h_{2}=2 x+3 y+4 z-2 y z+3 y^{2} z+x^{2} y^{2} z+y z^{2}-2 y^{2} z^{2}, \\
& h_{3}=3+6 x+2 x^{3}+8 z-2 x z+4 x^{2} z-3 z^{2}-y z^{2}+y z^{3}, \\
& h_{4}=-2 x-3 y-4 z+y z+y^{2} z^{2}, \\
& h_{5}=9+18 x+3 x^{2}+12 x^{3}+2 x^{5}+21 z-12 x z+20 x^{2} z-4 x^{3} z+4 x^{4} z-18 z^{2}
\end{aligned}\right.
$$

Question 1: We know that F is a Gröbner basis of the ideal $\langle F\rangle$ it generates in $\mathbb{Q}[x, y]$ for the monomial order lex (x, y) (i.e. $y \prec_{\text {lex }} x$, and $\left.\left\langle\operatorname{LM}\left(f_{1}\right), \operatorname{LM}\left(f_{2}\right)\right\rangle=\operatorname{LM}(\langle F\rangle)\right)$.

Is F a minimal Gröbner basis ? If not, which polynomial can be removed ?
Answer:

Is the resulting minimal Gröbner basis reduced ?

Answer:

Question 2: Also, we know that H is a Gröbner basis of the ideal $\langle H\rangle$ it generates in $\mathbb{Q}[x, y, z]$ for the monomial order grevlex (x, y, z) (i.e. $x_{\text {grevlex }} \succ y$ grevlex $\succ z$, and $\left.\left\langle\operatorname{LM}\left(h_{1}\right), \operatorname{LM}\left(h_{2}\right), \operatorname{LM}\left(h_{3}\right), \operatorname{LM}\left(h_{4}\right), \operatorname{LM}\left(h_{5}\right)\right\rangle=\operatorname{LM}(\langle H\rangle)\right)$.

Is H a minimal Gröbner basis ? If not which polynomial(s) can be removed? Answer:

Is the resulting minimal Gröbner basis reduced ?
Answer:

