Napier 数とその比較

on December 4th， 2010

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e
$$

で定まる実数 e を，数学者 John Napier に因んで Napier 数とよぶ．Wikipedia から少し抜粋して みよう。

The mathematical constant e is the unique real number such that the value of the derivative（slope of the tangent line）of the function $f(x)=e^{x}$ at the point $x=0$ is equal to 1 ．The function e^{x} so defined is called the exponential function，and its inverse is the natural logarithm，or logarithm to base e ．The number e is also commonly defined as the base of the natural logarithm（using an integral to define the latter），as the limit of a certain sequence，or as the sum of a certain series（see the alternative characterizations，below）．

The number e is irrational；it is not a ratio of integers．Furthermore，it is transcendental； it is not a root of any non－zero polynomial with rational coefficients．The numerical value of e truncated to 50 decimal places is

$$
2.71828182845904523536028747135266249775724709369995 \ldots
$$

以下に最初の関数のグラフを示す．確かに $x=0$ のときに上の値に近づいているのが分かる．

Figure．関数 $f(x)=(1+x)^{1 / x}$ のグラフ．

